Do you want to publish a course? Click here

Identifying nearby field T dwarfs in the UKIDSS Galactic Clusters Survey

251   0   0.0 ( 0 )
 Added by Nicolas Lodieu
 Publication date 2008
  fields Physics
and research's language is English
 Authors N. Lodieu




Ask ChatGPT about the research

We present the discovery of two new late-T dwarfs identified in the UKIRT Infrared Deep Sky Survey (UKIDSS) Galactic Clusters Survey (GCS) Data Release 2 (DR2). These T dwarfs are nearby old T dwarfs along the line of sight to star-forming regions and open clusters targeted by the UKIDSS GCS. They are found towards the Alpha Per cluster and Orion complex, respectively, from a search in 54 square degrees surveyed in five filters. Photometric candidates were picked up in two-colour diagrams, in a very similar manner to candidates extracted from the UKIDSS Large Area Survey (LAS) but taking advantage of the Z filter employed by the GCS. Both candidates exhibit near-infrared J-band spectra with strong methane and water absorption bands characteristic of late-T dwarfs. We derive spectral types of T6.5+/-0.5 and T7+/-1 and estimate photometric distances less than 50 pc for UGCS J030013.86+490142.5 and UGCS J053022.52-052447.4, respectively. The space density of T dwarfs found in the GCS seems consistent with discoveries in the larger areal coverage of the UKIDSS Large Area Survey, indicating one T dwarf in 6-11 square degrees. The final area surveyed by the GCS, 1000 square degrees in five passbands, will allow expansion of the LAS search area by 25%, increase the probability of finding ultracool brown dwarfs, and provide optimal estimates of contamination by old field brown dwarfs in deep surveys to identify such objects in open clusters and star-forming regions.



rate research

Read More

131 - D. J. Pinfield 2008
We present the discovery of fifteen new T2.5-T7.5 dwarfs (with estimated distances between ~24-93pc, identified in the first three main data releases of the UKIRT Infrared Deep Sky Survey. This brings the total number of T dwarfs discovered in the Large Area Survey (to date) to 28. These discoveries are confirmed by near infrared spectroscopy, from which we derive spectral types on the unified scheme of Burgasser et al. (2006). Seven of the new T dwarfs have spectral types of T2.5-T4.5, five have spectral types of T5-T5.5, one is a T6.5p, and two are T7-7.5. We assess spectral morphology and colours to identify T dwarfs in our sample that may have non-typical physical properties (by comparison to solar neighbourhood populations). The colours of the full sample of LAS T dwarfs show a possible trend to bluer Y-J with decreasing effective temperature beyond T8. By accounting for the main sources of incompleteness (selection, follow-up and spatial) as well as the effects of unresolved binarity and Malmquist bias, we estimate that there are 17+-4 >=T4 dwarfs in the J<=19 volume of the LAS second data release. Comparing this to theoretical predictions is most consistent with a sub-stellar mass function exponent alpha between -1.0 and 0. This is consistent with the latest 2MASS/SDSS constraint (which is based on lower number statistics), and is significantly lower than the alpha~1.0 suggested by L dwarf field populations, possibly a result of the lower mass range probed by the T dwarf class.
We report the discovery of 47 new T dwarfs in the Fourth Data Release (DR4) from the Large Area Survey (LAS) of the UKIRT Infrared Deep Sky Survey with spectral types ranging from T0 to T8.5. These bring the total sample of LAS T dwarfs to 80 as of DR4. In assigning spectral types to our objects we have identified 8 new spectrally peculiar objects, and divide 7 of them into two classes. H2O-H-early have a H2O-H index that differs with the H2O-J index by at least 2 sub-types. CH4-J-early have a CH4-J index that disagrees with the H20-J index by at least 2 subtypes. We have ruled out binarity as a sole explanation for both types of peculiarity, and suggest that they may represent hitherto unrecognised tracers of composition and/or gravity. Clear trends in z(AB)-J and Y-J are apparent for our sample, consistent with weakening absorption in the red wing of the KI line at 0.77microns with decreasing effective temperature. We have used our sample to estimate space densities for T6-T9 dwarfs. By comparing our sample to Monte-Carlo simulations of field T dwarfs for various mass functions of the form phi(M) propto M^-alpha, we have placed weak constraints on the form of the field mass function. Our analysis suggests that the substellar mass function is declining at lower masses, with negative values of alpha preferred. This is at odds with results for young clusters that have been generally found to have alpha > 0.
The UKIDSS Galactic Plane Survey (GPS) is one of the five near infrared Public Legacy Surveys that are being undertaken by the UKIDSS consortium, using the Wide Field Camera on the United Kingdom Infrared Telescope. It is surveying 1868 sq.deg. of the northern and equatorial Galactic plane at Galactic latitudes -5<b<5 in the J, H and K filters and a ~200 sq.deg. area of the Taurus-Auriga-Perseus molecular cloud complex in these three filters and the 2.12 um (1-0) H_2 filter. It will provide data on ~2 billion sources. Here we describe the properties of the dataset and provide a users guide for its exploitation. We also present brief Demonstration Science results from DR2 and from the Science Verification programme. These results illustrate how GPS data will frequently be combined with data taken in other wavebands to produce scientific results. The Demonstration Science includes studies of: (i) the star formation region G28.983-0.603, cross matching with Spitzer-GLIMPSE data to identify YSOs; (ii) the M17 nebula; (iii) H_2 emission in the rho Ophiuchi dark cloud; (iv) X-ray sources in the Galactic Centre; (v) external galaxies in the Zone of Avoidance; (vi) IPHAS-GPS optical-infrared spectrophotometric typing. (abridged).
129 - N. Lodieu 2011
Knowledge of the mass function in open clusters constitutes one way to constrain the formation of low-mass stars and brown dwarfs as does the knowledge of the frequency of multiple systems and the properties of disks. The aim of the project is to determine the shape of the mass function in the low-mass and substellar regimes in the pre-main sequence (27 Myr) cluster IC4665, which is located at 350 pc from the Sun. We have cross-matched the near-infrared photometric data from the Eighth Data Release of the UKIRT Infrared Deep Sky Survey (UKIDSS) Galactic Clusters Survey with previous optical data obtained with the Canada-France-Hawaii wide-field camera to improve the determination of the luminosity and mass functions in the low-mass and substellar regimes. The availability of i and z photometry taken with the CFH12K camera on the Canada France Hawaii Telescope added strong constraints to the UKIDSS photometric selection in this cluster, which is located in a dense region of our Galaxy. We have derived the luminosity and mass functions of the cluster down to J=18.5 mag, corresponding to masses of ~0.025 Msun at the distance and age of IC4665 according to theoretical models. In addition, we have extracted new candidate members down to ~20 Jupiter masses in a previously unstudied region of the cluster. We have derived the mass function over the 0.6-0.04 Msun mass range and found that it is best represented by a log-normal function with a peak at 0.25-0.16 Msun, consistent with the determination in the Pleiades.
121 - Kuenley Chiu 2007
We present the optical and near-infrared photometry and spectroscopy of four faint T dwarfs newly discovered from the UKIDSS first data release. The sample, drawn from an imaged area of ~136 square degrees to a depth of Y=19.9 (5-sigma, Vega), is located in the SDSS Southern Equatorial Stripe, a region of significant future deep imaging potential. We detail the selection and followup of these objects, three of which are spectroscopically confirmed brown dwarfs ranging from type T2.5 to T7.5, and one is photometrically identified as early T. Their magnitudes range from Y=19.01 to 19.88 with derived distances from 34 to 98 pc, making these among the coldest and faintest brown dwarfs known. The sample brings the total number of T dwarfs found or confirmed by UKIDSS data in this region to nine, and we discuss the projected numbers of dwarfs in the future survey data. We estimate that ~240 early- and late-T dwarfs are discoverable in the UKIDSS LAS data, falling significantly short of published model projections and suggesting that IMFs and/or birthrates may be at the low end of possible models. Thus, deeper optical data has good potential to exploit the UKIDSS survey depth more fully, but may still find the potential Y dwarf sample to be extremely rare.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا