Do you want to publish a course? Click here

The UKIDSS Galactic Plane Survey

135   0   0.0 ( 0 )
 Added by Philip Lucas
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The UKIDSS Galactic Plane Survey (GPS) is one of the five near infrared Public Legacy Surveys that are being undertaken by the UKIDSS consortium, using the Wide Field Camera on the United Kingdom Infrared Telescope. It is surveying 1868 sq.deg. of the northern and equatorial Galactic plane at Galactic latitudes -5<b<5 in the J, H and K filters and a ~200 sq.deg. area of the Taurus-Auriga-Perseus molecular cloud complex in these three filters and the 2.12 um (1-0) H_2 filter. It will provide data on ~2 billion sources. Here we describe the properties of the dataset and provide a users guide for its exploitation. We also present brief Demonstration Science results from DR2 and from the Science Verification programme. These results illustrate how GPS data will frequently be combined with data taken in other wavebands to produce scientific results. The Demonstration Science includes studies of: (i) the star formation region G28.983-0.603, cross matching with Spitzer-GLIMPSE data to identify YSOs; (ii) the M17 nebula; (iii) H_2 emission in the rho Ophiuchi dark cloud; (iv) X-ray sources in the Galactic Centre; (v) external galaxies in the Zone of Avoidance; (vi) IPHAS-GPS optical-infrared spectrophotometric typing. (abridged).



rate research

Read More

359 - L. Smith , P. W. Lucas , R. Bunce 2014
The UKIDSS Galactic Plane Survey (GPS) began in 2005 as a 7 year effort to survey ~1800 square degrees of the northern Galactic plane in the J, H, and K passbands. The survey included a second epoch of K band data, with a baseline of 2 to 8 years, for the purpose of investigating variability and measuring proper motions. We have calculated proper motions for 167 Million sources in a 900 square degree area located at l > 60 degrees in order to search for new high proper motion objects. Visual inspection has verified 617 high proper motion sources (> 200 mas/yr) down to K=17, of which 153 are new discoveries. Among these we have a new spectroscopically confirmed T5 dwarf, an additional T dwarf with estimated type T6, 13 new L dwarf candidates, and two new common proper motion systems containing ultracool dwarf candidates. We provide improved proper motions for an additional 12 high proper motion stars that were independently discovered in the WISE dataset during the course of this investigation.
The VLA Galactic Plane Survey (VGPS) is a survey of HI and 21-cm continuum emission in the Galactic plane between longitude 18 degrees 67 degr. with latitude coverage from |b| < 1.3 degr. to |b| < 2.3 degr. The survey area was observed with the Very Large Array (VLA) in 990 pointings. Short-spacing information for the HI line emission was obtained by additional observations with the Green Bank Telescope (GBT). HI spectral line images are presented with a resolution of 1 arcmin x 1 arcmin x 1.56 km/s (FWHM) and rms noise of 2 K per 0.824 km/s channel. Continuum images made from channels without HI line emission have 1 arcmin (FWHM) resolution. VGPS images are compared with images from the Canadian Galactic Plane Survey (CGPS) and the Southern Galactic Plane Survey (SGPS). In general, the agreement between these surveys is impressive, considering the differences in instrumentation and image processing techniques used for each survey. The differences between VGPS and CGPS images are small, < 6 K (rms) in channels where the mean HI brightness temperature in the field exceeds 80 K. A similar degree of consistency is found between the VGPS and SGPS. The agreement we find between arcminute resolution surveys of the Galactic plane is a crucial step towards combining these surveys into a single uniform dataset which covers 90% of the Galactic disk: the International Galactic Plane Survey (IGPS). The VGPS data will be made available on the World Wide Web through the Canadian Astronomy Data Centre (CADC).
338 - L. Petrov 2011
This paper presents accurate absolute positions from a 24 GHz Very Long Baseline Array (VLBA) search for compact extragalactic sources in an area where the density of known calibrators with precise coordinates is low. The goals were to identify additional sources suitable for use as phase calibrators for galactic sources, determine their precise positions, and produce radio images. In order to achieve these goals, we developed a new software package, PIMA, for determining group delays from wide-band data with much lower detection limit. With the use of PIMA we have detected 327 sources out of 487 targets observed in three 24 hour VLBA experiments. Among the 327 detected objects, 176 are within 10 degrees of the Galactic plane. This VGaPS catalogue of source positions, plots of correlated flux density versus projected baseline length, contour plots, as well as weighted CLEAN images and calibrated visibility data in FITS format, are available on the Web at http://astrogeo.org/vgaps. Approximately one half of objects from the 24 GHz catalogue were observed at dual band 8.6 GHz and 2.3 GHz experiments. Position differences at 24 GHz versus 8.6/2.3 GHz for all but two objects on average are strictly within reported uncertainties. We found that for two objects with complex structure positions at different frequencies correspond to different components of a source.
261 - N. Lodieu 2008
We present the discovery of two new late-T dwarfs identified in the UKIRT Infrared Deep Sky Survey (UKIDSS) Galactic Clusters Survey (GCS) Data Release 2 (DR2). These T dwarfs are nearby old T dwarfs along the line of sight to star-forming regions and open clusters targeted by the UKIDSS GCS. They are found towards the Alpha Per cluster and Orion complex, respectively, from a search in 54 square degrees surveyed in five filters. Photometric candidates were picked up in two-colour diagrams, in a very similar manner to candidates extracted from the UKIDSS Large Area Survey (LAS) but taking advantage of the Z filter employed by the GCS. Both candidates exhibit near-infrared J-band spectra with strong methane and water absorption bands characteristic of late-T dwarfs. We derive spectral types of T6.5+/-0.5 and T7+/-1 and estimate photometric distances less than 50 pc for UGCS J030013.86+490142.5 and UGCS J053022.52-052447.4, respectively. The space density of T dwarfs found in the GCS seems consistent with discoveries in the larger areal coverage of the UKIDSS Large Area Survey, indicating one T dwarf in 6-11 square degrees. The final area surveyed by the GCS, 1000 square degrees in five passbands, will allow expansion of the LAS search area by 25%, increase the probability of finding ultracool brown dwarfs, and provide optimal estimates of contamination by old field brown dwarfs in deep surveys to identify such objects in open clusters and star-forming regions.
137 - N. Lodieu 2011
Knowledge of the mass function in open clusters constitutes one way to constrain the formation of low-mass stars and brown dwarfs as does the knowledge of the frequency of multiple systems and the properties of disks. The aim of the project is to determine the shape of the mass function in the low-mass and substellar regimes in the pre-main sequence (27 Myr) cluster IC4665, which is located at 350 pc from the Sun. We have cross-matched the near-infrared photometric data from the Eighth Data Release of the UKIRT Infrared Deep Sky Survey (UKIDSS) Galactic Clusters Survey with previous optical data obtained with the Canada-France-Hawaii wide-field camera to improve the determination of the luminosity and mass functions in the low-mass and substellar regimes. The availability of i and z photometry taken with the CFH12K camera on the Canada France Hawaii Telescope added strong constraints to the UKIDSS photometric selection in this cluster, which is located in a dense region of our Galaxy. We have derived the luminosity and mass functions of the cluster down to J=18.5 mag, corresponding to masses of ~0.025 Msun at the distance and age of IC4665 according to theoretical models. In addition, we have extracted new candidate members down to ~20 Jupiter masses in a previously unstudied region of the cluster. We have derived the mass function over the 0.6-0.04 Msun mass range and found that it is best represented by a log-normal function with a peak at 0.25-0.16 Msun, consistent with the determination in the Pleiades.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا