Do you want to publish a course? Click here

Ni/Ni3C Core-Shell Nanochains and Its Magnetic Properties: One-Step Synthesis at low temperature

85   0   0.0 ( 0 )
 Added by Chinping Chen
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

One-dimensional Ni/Ni3C core-shell nanoball chains with an average diameter by around 30 nm were synthesized by means of a mild chemical solution method using a soft template of trioctylphosphineoxide (TOPO). It was revealed that the uniform Ni nanochains were capped with Ni3C thin shells by about 1 to 4 nm in thickness and each Ni core consists of polygrains. The coercivity of the core-shell nanochains is much enhanced (600 Oe at 5 K) and comparable with single Ni nanowires due to the one-dimensional shape anisotropy. Deriving from the distinctive structure of Ni core and Ni3C shell, this architecture may possess a possible bi-functionality. This unique architecture is also useful for the study on the magnetization reversal mechanism of one-dimensional magnetic nanostructure.



rate research

Read More

We present a systematic study of core-shell Au/Fe_3O_4 nanoparticles produced by thermal decomposition under mild conditions. The morphology and crystal structure of the nanoparticles revealed the presence of Au core of <d> = (6.9pm 1.0) nm surrounded by Fe_3O_4 shell with a thickness of ~3.5 nm, epitaxially grown onto the Au core surface. The Au/Fe_3O_4 core-shell structure was demonstrated by high angle annular dark field scanning transmission electron microscopy analysis. The magnetite shell grown on top of the Au nanoparticle displayed a thermal blocking state at temperatures below T_B = 59 K and a relaxed state well above T_B. Remarkably, an exchange bias effect was observed when cooling down the samples below room temperature under an external magnetic field. Moreover, the exchange bias field (H_{EX}) started to appear at T~40 K and its value increased by decreasing the temperature. This effect has been assigned to the interaction of spins located in the magnetically disordered regions (in the inner and outer surface of the Fe_3O_4 shell) and spins located in the ordered region of the Fe_3O_4 shell.
60 - M. Gich , C. Frontera , A. Roig 2006
The crystal and magnetic structures of the orthorhombic e-Fe2O3 have been studied by simultaneous Rietveld refinement of X-ray and neutron powder diffraction data in combination with Mossbauer spectroscopy, as well as magnetisation and heat capacity measurements. It has been found that above 150 K the e-Fe2O3 polymorph is a collinear ferrimagnet with the magnetic moments directed along the a axis, while the magnetic ordering below 80 K is characterised by a square-wave incommensurate structure. The transformation between these two states is a second order phase transition and involves subtle structural changes mostly affecting the coordination of the tetrahedral and one of the octahedral Fe sites. The temperature dependence of the e-Fe2O3 magnetic properties is discussed in the light of these results.
169 - Shuang Zhou , Ji Wang , Yakui Weng 2016
A low temperature hydrothermal route has been developed, and pure phase Ba$_2$Ni$_3$F$_{10}$ nanowires have been successfully prepared under the optimized conditions. Under the 325 nm excitation, the Ba$_2$Ni$_3$F$_{10}$ nanowires exhibit three emission bands with peak positions locating at 360 nm, 530 nm, and 700 nm, respectively. Combined with the first-principles calculations, the photoluminescence property can be explained by the electron transitions between the t2g and eg orbitals. Clear hysteresis loops observed below the temperature of 60 K demonstrates the weak ferromagnetism in Ba$_2$Ni$_3$F$_{10}$ nanowires, which has been attributed to the surface strain of nanowires. Exchange bias with blocking temperature of 55 K has been observed, which originates from the magnetization pinning under the cooling field due to antiferromagnetic core/weak ferromagnetic shell structure of Ba2Ni3F10 nanowires.
234 - T. Omiya , F. Matsukura , T. Dietl 1999
Magnetotransport properties of ferromagnetic semiconductor (Ga,Mn)As have been investigated. Measurements at low temperature (50 mK) and high magnetic field (<= 27 T) have been employed in order to determine the hole concentration p = 3.5x10^20 cm ^-3 of a metallic (Ga0.947Mn0.053)As layer. The analysis of the temperature and magnetic field dependencies of the resistivity in the paramagnetic region was performed with the use of the above value of p, which gave the magnitude of p-d exchange energy |N0beta | ~ 1.5 eV.
Core-shell nanowires made of Si and Ge can be grown experimentally with excellent control for different sizes of both core and shell. We have studied the structural properties of Si/Ge and Ge/Si core-shell nanowires aligned along the $[110]$ direction, with diameters up to 10.2~nm and varying core to shell ratios, using linear scaling Density Functional Theory (DFT). We show that Vegards law, which is often used to predict the axial lattice constant, can lead to an error of up to 1%, underlining the need for a detailed emph{ab initio} atomistic treatment of the nanowire structure. We analyse the character of the intrinsic strain distribution and show that, regardless of the composition or bond direction, the Si core or shell always expands. In contrast, the strain patterns in the Ge shell or core are highly sensitive to the location, composition and bond direction. The highest strains are found at heterojunction interfaces and the surfaces of the nanowires. This detailed understanding of the atomistic structure and strain paves the way for studies of the electronic properties of core-shell nanowires and investigations of doping and structure defects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا