We introduce the concept of a consistency space. The idea of the consistency space is motivated by the question, Given only the collection of sets of sentences which are logically consistent, is it possible to reconstruct their lattice structure?
We introduce an algebraic system which can be used as a model for spaces with geodesic paths between any two of their points. This new algebraic structure is based on the notion of mobility algebra which has recently been introduced as a model for the unit interval of real numbers. Mobility algebras consist on a set $A$ together with three constants and a ternary operation. In the case of the closed unit interval $A=[0,1]$, the three constants are 0, 1 and 1/2 while the ternary operation is $p(x,y,z)=x-yx+yz$. A mobility space is a set $X$ together with a map $qcolon{Xtimes Atimes Xto X}$ with the meaning that $q(x,t,y)$ indicates the position of a particle moving from point $x$ to point $y$ at the instant $tin A$, along a geodesic path within the space $X$. A mobility space is thus defined with respect to a mobility algebra, in the same way as a module is defined over a ring. We introduce the axioms for mobility spaces, investigate the main properties and give examples. We also establish the connection between the algebraic context and the one of spaces with geodesic paths. The connection with affine spaces is briefly mentioned.
Discrete Euclidian Spaces (DESs) are the beginning of a journey without return towards the discretization of mathematics. Important mathematical concepts- such as the idea of number or the systems of numeration, whose formal definition is currently independent of Euclidean spaces -have in the Isodimensional Discrete Mathematics (IDM) their roots in the DESs. This mathematics, which arises largely from the discretization of traditional mathematics, presents its foundations and concepts differently from the orthodox way, so at first glance it may seem that the IDM could be an exotic tool, or perhaps just a simple curiosity. However, the IDM dis-crete approaches have a great theoretical repercussion on traditional mathematics.
In this paper, a new concept, the fuzzy rate of an operator in linear spaces is proposed for the very first time. Some properties and basic principles of it are studied. Fuzzy rate of an operator $B$ which is specific in a plane is discussed. As its application, a new fixed point existence theorem is proved.
We propose a new algorithm to obtain max flow for the multicommodity flow. This algorithm utilizes the max-flow min-cut theorem and the well known labeling algorithm due to Ford and Fulkerson [1]. We proceed as follows: We select one source/sink pair among the n distinguished source/sink pairs at a time and treat the given multicommodity network as a single commodity network for such chosen source/sink pair. Then applying standard labeling algorithm, separately for each sink/source pair, the feasible flow which is max flow and the corresponding minimum cut corresponding to each source/sink pair is obtained. A record is made of these cuts and the paths flowing through the edges of these cuts. This record is then utilized to develop our algorithm to obtain max flow for multicommodity flow. In this paper we have pinpointed the difficulty behind not getting a max flow min cut type theorem for multicommodity flow and found out a remedy.
This paper examines the possibilities of extending Cantors two arguments on the uncountable nature of the set of real numbers to one of its proper denumerable subsets: the set of rational numbers. The paper proves that, unless certain restrictive conditions are satisfied, both extensions are possible. It is therefore indispensable to prove that those conditions are in fact satisfied in Cantors theory of transfinite sets. Otherwise that theory would be inconsistent.