No Arabic abstract
The enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum random walk (QRW) with the problem of data clustering, and develop two clustering algorithms based on the one dimensional QRW. Then, the probability distributions on the positions induced by QRW in these algorithms are investigated, which also indicates the possibility of obtaining better results. Consequently, the experimental results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the clustering algorithms are of fast rates of convergence. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.
We introduce a modified model of random walk, and then develop two novel clustering algorithms based on it. In the algorithms, each data point in a dataset is considered as a particle which can move at random in space according to the preset rules in the modified model. Further, this data point may be also viewed as a local control subsystem, in which the controller adjusts its transition probability vector in terms of the feedbacks of all data points, and then its transition direction is identified by an event-generating function. Finally, the positions of all data points are updated. As they move in space, data points collect gradually and some separating parts emerge among them automatically. As a consequence, data points that belong to the same class are located at a same position, whereas those that belong to different classes are away from one another. Moreover, the experimental results have demonstrated that data points in the test datasets are clustered reasonably and efficiently, and the comparison with other algorithms also provides an indication of the effectiveness of the proposed algorithms.
Enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum game with the problem of data clustering, and then develop a quantum-game-based clustering algorithm, in which data points in a dataset are considered as players who can make decisions and implement quantum strategies in quantum games. After each round of a quantum game, each players expected payoff is calculated. Later, he uses a link-removing-and-rewiring (LRR) function to change his neighbors and adjust the strength of links connecting to them in order to maximize his payoff. Further, algorithms are discussed and analyzed in two cases of strategies, two payoff matrixes and two LRR functions. Consequently, the simulation results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the clustering algorithms have fast rates of convergence. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.
Graph clustering is an important technique to understand the relationships between the vertices in a big graph. In this paper, we propose a novel random-walk-based graph clustering method. The proposed method restricts the reach of the walking agent using an inflation function and a normalization function. We analyze the behavior of the limited random walk procedure and propose a novel algorithm for both global and local graph clustering problems. Previous random-walk-based algorithms depend on the chosen fitness function to find the clusters around a seed vertex. The proposed algorithm tackles the problem in an entirely different manner. We use the limited random walk procedure to find attracting vertices in a graph and use them as features to cluster the vertices. According to the experimental results on the simulated graph data and the real-world big graph data, the proposed method is superior to the state-of-the-art methods in solving graph clustering problems. Since the proposed method uses the embarrassingly parallel paradigm, it can be efficiently implemented and embedded in any parallel computing environment such as a MapReduce framework. Given enough computing resources, we are capable of clustering graphs with millions of vertices and hundreds millions of edges in a reasonable time.
We study finite-armed stochastic bandits where the rewards of each arm might be correlated to those of other arms. We introduce a novel phased algorithm that exploits the given structure to build confidence sets over the parameters of the true bandit problem and rapidly discard all sub-optimal arms. In particular, unlike standard bandit algorithms with no structure, we show that the number of times a suboptimal arm is selected may actually be reduced thanks to the information collected by pulling other arms. Furthermore, we show that, in some structures, the regret of an anytime extension of our algorithm is uniformly bounded over time. For these constant-regret structures, we also derive a matching lower bound. Finally, we demonstrate numerically that our approach better exploits certain structures than existing methods.
We study the problem of applying spectral clustering to cluster multi-scale data, which is data whose clusters are of various sizes and densities. Traditional spectral clustering techniques discover clusters by processing a similarity matrix that reflects the proximity of objects. For multi-scale data, distance-based similarity is not effective because objects of a sparse cluster could be far apart while those of a dense cluster have to be sufficiently close. Following [16], we solve the problem of spectral clustering on multi-scale data by integrating the concept of objects reachability similarity with a given distance-based similarity to derive an objects coefficient matrix. We propose the algorithm CAST that applies trace Lasso to regularize the coefficient matrix. We prove that the resulting coefficient matrix has the grouping effect and that it exhibits sparsity. We show that these two characteristics imply very effective spectral clustering. We evaluate CAST and 10 other clustering methods on a wide range of datasets w.r.t. various measures. Experimental results show that CAST provides excellent performance and is highly robust across test cases of multi-scale data.