No Arabic abstract
Oscillations of the Sun have been used to understand its interior structure. The extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. The CoRoT (Convection Rotation and Planetary Transits) satellite, launched in December 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. The oscillation amplitudes are about 1.5 times as large as those in the Sun; the stellar granulation is up to three times as high. The stellar amplitudes are about 25% below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars.
Reinhold et al. (Science, 1 May 2020, p. 518) provided two possible interpretations of measurements showing that the Sun is less active than other solar-like stars. We argue that one of those interpretations anticipates the observed differences between the properties of their two stellar samples. This suggests that solar-like stars become permanently less variable beyond a specific evolutionary phase.
We study the distribution of the photometric rotation period (Prot), which is a direct measurement of the surface rotation at active latitudes, for three subsamples of Sun-like stars: one from CoRoT data and two from Kepler data. We identify the main populations of these samples and interpret their main biases specifically for a comparison with the solar Prot. Prot and variability amplitude (A) measurements were obtained from public CoRoT and Kepler catalogs combined with physical parameters. Because these samples are subject to selection effects, we computed synthetic samples with simulated biases to compare with observations, particularly around the location of the Sun in the HR diagram. Theoretical grids and empirical relations were used to combine physical parameters with Prot and A. Biases were simulated by performing cutoffs on the physical and rotational parameters in the same way as in each observed sample. A crucial cutoff is related with the detectability of the rotational modulation, which strongly depends on A. The synthetic samples explain the observed Prot distributions of Sun-like stars as having two main populations: one of young objects (group I, with ages younger than ~1 Gyr) and another of MS and evolved stars (group II, with ages older than ~1 Gyr). The proportions of groups I and II in relation to the total number of stars range within 64-84% and 16-36%, respectively. Hence, young objects abound in the distributions, producing the effect of observing a high number of short periods around the location of the Sun in the HR diagram. Differences in the Prot distributions between the CoRoT and Kepler Sun-like samples may be associated with different Galactic populations. Overall, the synthetic distribution around the solar period agrees with observations, which suggests that the solar rotation is normal with respect to Sun-like stars within the accuracy of current data.
We present a brief overview of the history of attempts to obtain a clear detection of solar-like oscillations in cluster stars, and discuss the results on the first clear detection, which was made by the Kepler Asteroseismic Science Consortium (KASC) Working Group 2.
Context: Measuring amplitudes of solar-like oscillations and the granulation power spectral density constitute two promising sources of information to improve our understanding and description of the convection in outer layers of stars. However, different instruments, using different techniques and different bandpasses, give measurements that cannot be directly compared to each other or to theoretical values. Aims: In this work, we define simple response functions to derive intrinsic oscillation amplitudes and granulation power densities, from photometry measurements obtained with a specific instrument on a specific star. Methods: We test this method on different photometry data sets obtained on the Sun with two different instruments in three different bandpasses. Results: We show that the results are in good agreement and we establish reference intrinsic values for the Sun with photometry. We also compute the response functions of the CoRoT instrument for a range of parameters representative of the Main Sequence solar-like pulsators to be observed with CoRoT. We show that these response functions can be conveniently described by simple analytic functions of the effective temperature of the target star.
Context: The F8 star HD 181906 (effective temperature ~6300K) was observed for 156 days by the CoRoT satellite during the first long run in the centre direction. Analysis of the data reveals a spectrum of solar-like acoustic oscillations. However, the faintness of the target (m_v=7.65) means the signal-to-noise (S/N) in the acoustic modes is quite low, and this low S/N leads to complications in the analysis. Aims: To extract global variables of the star as well as key parameters of the p modes observed in the power spectrum of the lightcurve. Methods: The power spectrum of the lightcurve, a wavelet transform and spot fitting have been used to obtain the average rotation rate of the star and its inclination angle. Then, the autocorrelation of the power spectrum and the power spectrum of the power spectrum were used to properly determine the large separation. Finally, estimations of the mode parameters have been done by maximizing the likelihood of a global fit, where several modes were fit simultaneously. Results: We have been able to infer the mean surface rotation rate of the star (~4 microHz) with indications of the presence of surface differential rotation, the large separation of the p modes (~87 microHz), and therefore also the ridges corresponding to overtones of the acoustic modes.