Do you want to publish a course? Click here

Low temperature specific heat of the hole-doped Ba_{0.6}K_{0.4}Fe_2As_2 single crystals and electron-doped SmFeAsO_{0.9}F_{0.1} samples

282   0   0.0 ( 0 )
 Added by Gang Mu
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Low temperature specific heat (SH) was measured on the FeAs-based superconducting single crystals Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ and high pressure synthesized polycrystalline samples SmFeAsO$_{0.9}$F$_{0.1}$. It is found that the sharp SH anomaly $Delta C/T|_{T_c}$ in Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ reaches an unexpected high value of 98 mJ/mol K$^2$, about one order of magnitude larger than that of SmFeAsO$_{0.9}$F$_{0.1}$ ($6sim8$ mJ/mol K$^2$) samples, suggesting very high normal state quasiparticle density of states in FeAs-122 than in FeAs-1111. Furthermore, we found that the electronic SH coefficient $gamma_e(T)$ of Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ is weakly temperature dependent and increases almost linearly with the magnetic field in low temperature region, which may indicate that the hole-doped FeAs-122 system contains a dominant component with a full superconducting gap, although we cannot rule out the possibility of a small component with anisotropic or nodal gap. A detailed analysis reveals that the $gamma_e(T)$ of Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ cannot be fitted with a single gap of s-wave symmetry probably due to the multigap effect. These results indicate clear difference between the properties of the superconducting state of the holed-doped Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ and the F-doped LnFeAsO (Ln = rare earth elements) systems, which we believe is originated from the complex Fermi surface structures in different systems.



rate research

Read More

From the measurement and analysis of the specific heat of high-quality K_(1-x)Na_xFe_2As_2 single crystals we establish the presence of large T^2 contributions with coefficients alpha_sc ~ 30 mJ/mol K^3 at low-T for both x=0 and 0.1. Together with the observed square root field behavior of the specific heat in the superconducting state both findings evidence d-wave superconductivity on almost all Fermi surface sheets with an average gap amplitude of Delta_0 in the range of 0.4 - 0.8 meV. The derived Delta_0 and the observed T_c agree well with the values calculated within the Eliashberg theory, adopting a spin-fluctuation mediated pairing in the intermediate coupling regime.
We have observed the Josephson effect in junctions formed between single crystals of SrFe1.74Co0.26As2 and Ba0.23K0.77Fe2As2. I-V curves showed resistively-shunted junction characteristics, and the ac Josephson effect was observed under microwave irradiation. By applying an in-plane magnetic field, the critical current is completely modulated and shows a relatively symmetric diffraction pattern, consistent with the intermediate junction limit. The observation of the Josephson effect in the p-n bicrystal structure not only has significant implications for designing phase-sensitive junctions to probe the pairing symmetry of iron pnictide superconductors, but also represents an important step in developing all iron pnictide devices for applications.
Low-temperature specific heat (SH) is measured for the 12442-type KCa$_2$Fe$_4$As$_4$F$_2$ single crystal under different magnetic fields. A clear SH jump with the height of $Delta C/T|_{T_c}$ = 130 mJ/mol K$^2$ is observed at the superconducting transition temperature $T_c$. It is found that the electronic SH coefficient $Deltagamma (H)$ quickly increases when the field is in the low-field region below 3 T and then considerably slows down the increase with a further increase in the field, which indicates a rather strong anisotropy or multi-gap feature with a small minimum in the superconducting gap(s). The temperature-dependent SH data indicates the presence of the $T^2$ term, which supplies further information and supports the picture with a line-nodal gap structure. Moreover, the onset point of the SH transition remains almost unchanged under the field as high as 9 T, which is similar to that observed in cuprates, and placed this system in the middle between the BCS limit and the Bose-Einstein condensation.
To probe manifestations of multiband superconductivity in oxypnictides, we measured the angular dependence of the magnetic torque $tau(theta)$ in the mixed state of LaO$_{0.9}$F$_{0.1}$FeAs single crystals as a function of temperature $T$ and magnetic fields $H$ up to 18 T. The paramagnetic contribution of the Fe ions is properly treated in order to extract the effective mass anisotropy parameter $gamma=(m_c/m_{ab})^{1/2}$ from $tau(theta)$. We show that $gamma$ depends strongly on both $T$ and $H$, reaching a maximum value of $sim$ 10 followed by a decrease towards values close to 1 as $T$ is lowered. The observed field dependencies of the London penetration depth $lambda_{ab}$ and $gamma$ suggest the onset of suppression of a superconducing gap at $H approx H_{c2}/3$.
We report on the nonequilibrium quasiparticle dynamics in BaFe$_2$As$_2$ on both the hole doped (Ba$_{1-x}$K$_x$Fe$_2$As$_2$) and electron doped (BaFe$_{2-y}$Co$_y$As$_2$) sides of the phase diagram using ultrafast pump-probe spectroscopy. Below $T_c$, measurements conducted at low photoinjected quasiparticle densities in the optimally and overdoped Ba$_{1-x}$K$_x$Fe$_2$As$_2$ samples reveal two distinct relaxation processes: a fast component whose decay rate increases linearly with excitation density and a slow component with an excitation density independent decay rate. We argue that these two processes reflect the recombination of quasiparticles in the two hole bands through intraband and interband processes. We also find that the thermal recombination rate of quasiparticles increases quadratically with temperature in these samples. The temperature and excitation density dependence of the decays indicates fully gapped hole bands and nodal or very anisotropic electron bands. At higher excitation densities and lower hole dopings, the dependence of the dynamics on quasiparticle density disappears as the data are more readily understood in terms of a model which accounts for the quasiequilibrium temperature attained by the sample. In the BaFe$_{2-y}$Co$_y$As$_2$ samples, dependence of the recombination rate on quasiparticle density at low dopings (i.e., $y=0.12$) is suppressed upon submergence of the inner hole band and quasiparticle relaxation occurs in a slow, density independent manner.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا