Do you want to publish a course? Click here

Observing the clustering properties of galaxy clusters in dynamical dark-energy cosmologies

171   0   0.0 ( 0 )
 Added by Cosimo Fedeli
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the clustering properties of galaxy clusters expected to be observed by various forthcoming surveys both in the X-ray and sub-mm regimes by the thermal Sunyaev-Zeldovich effect. Several different background cosmological models are assumed, including the concordance $Lambda$CDM and various cosmologies with dynamical evolution of the dark energy. Particular attention is paid to models with a significant contribution of dark energy at early times which affects the process of structure formation. Past light cone and selection effects in cluster catalogs are carefully modeled by realistic scaling relations between cluster mass and observables and by properly taking into account the selection functions of the different instruments. The results show that early dark-energy models are expected to produce significantly lower values of effective bias and both spatial and angular correlation amplitudes with respect to the standard $Lambda$CDM model. Among the cluster catalogues studied in this work, it turns out that those based on emph{eRosita}, emph{Planck}, and South Pole Telescope observations are the most promising for distinguishing between various dark-energy models.



rate research

Read More

In this paper, we discuss improvements of the Suto et al. (2000) model, in the light of recent theoretical developments (new theoretical mass functions, a more accurate mass-temperature relation and an improved bias model) to predict the clustering properties of galaxy clusters and to obtain constraints on cosmological parameters. We re-derive the two-point correlation function of clusters of galaxies for OCDM and LambdaCDM cosmological models, and we compare these results with the observed spatial correlation function for clusters in RASS1 (ROSAT All-Sky Survey 1), and in XBACs (X-RAY Brighest Abell-Type) samples. The comparison shows that the best agreement is obtained for the LambdaCDM model with Omega=0.3. The values of the correlation length obtained, (r_simeq 28.2 pm 5.2 rm h^{-1}} Mpc for LambdaCDM), are larger than those found in the literature and comparable with the results found in Borgani, Plionis & Kolokotronis (1999). (REST IN THE PAPER ABSTRACT)
Using SDSS-DR7, we construct a sample of 42382 galaxies with redshifts in the region of 20 galaxy clusters. Using two successive iterative methods, the adaptive kernel method and the spherical infall model, we obtained 3396 galaxies as members belonging to the studied sample. The 2D projected map for the distribution of the clusters members is introduced using the 2D adaptive kernel method to get the clusters centers. The cumulative surface number density profile for each cluster is fitted well with the generalized King model. The core radii of the clusters sample are found to vary from 0.18 Mpc $mbox{h}^{-1}$ (A1459) to 0.47 Mpc $mbox{h}^{-1}$ (A2670) with mean value of 0.295 Mpc $mbox{h}^{-1}$. The infall velocity profile is determined using two different models, Yahil approximation and Praton model. Yahil approximation is matched with the distribution of galaxies only in the outskirts (infall regions) of many clusters of the sample, while it is not matched with the distribution within the inner core of the clusters. Both Yahil approximation and Praton model are matched together in the infall region for about 9 clusters in the sample but they are completely unmatched for the clusters characterized by high central density. For these cluster, Yahil approximation is not matched with the distribution of galaxies, while Praton model can describe well the infall pattern of such clusters.
208 - N.A. Arkhipova 2001
The time evolution of galaxy cluster abundance is used to constrain cosmological parameters in dark matter models containing a fraction of hot particles (massive neutrino). We test the modified MDM models with cosmic gravitational waves which are in agreement with observational data at $z=0$, and show that they do not pass the cluster evolution test and therefore should be ruled out. The models with a non-zero cosmological constant are in better agreement with the evolution test. We estimate $Omega_Lambda$ and find that it is strongly affected by a small fraction of hot dark matter: $0.4 <Omega_Lambda <0.8$ for $Omega_H /Omega_M <0.2$.
Laboratory experiments, large-scale computer simulations and observational cosmology have begun to make progress in the campaign to identify the particle responsible for gravitationally-inferred dark matter. In this contribution we discuss the dark matter density profiles in the cores of nearby galaxy clusters and estimate the gamma-ray flux expected for MSSM dark matter over a range of neutralino masses.
115 - A. Klypin 2003
We study properties of dark matter halos in a variety of models which include Dark Energy (DE). We consider both DE due to a scalar field self--interacting through Ratra-Peebles or SUGRA potentials, and DE with constant negative w=prho >-1. We find that at redshift zero the nonlinear power spectrum of the dark matter, and the mass function of halos, practically do not depend on DE state equation and are almost indistinguishable from predictions of the LCDM model. This is consistent with the nonlinear analysis presented in the accompanying paper. It is also a welcome feature because LCDM models fit a large variety of data. On the other hand, at high redshifts DE models show substantial differences from LCDM and substantial differences among themselves. Halo profiles differ even at z=0. DE halos are denser than LCDM in their central parts because the DE halos collapse earlier. Nevertheless, differences between the models are not so large. For example, the density at 10 kpc of a DE ~10^{13}Msun halo deviates from LCDM by not more than 50%. This, however, means that DE is not a way to ease the problem with cuspy dark matter profiles. Addressing another cosmological problem - abundance of subhalos -- we find that the number of satellites of halos in various DE models does not change relative to the LCDM, when normalized to the same circular velocity of the parent halo. To summarize, the best way to find which DE model fits the observed Universe is to look for evolution of halo properties. For example, the abundance of galaxy groups with mass larger than 10^{13}Msun at z> 2 can be used to discriminate between the models, and, thus, to constrain the nature of DE.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا