No Arabic abstract
In this paper, we discuss improvements of the Suto et al. (2000) model, in the light of recent theoretical developments (new theoretical mass functions, a more accurate mass-temperature relation and an improved bias model) to predict the clustering properties of galaxy clusters and to obtain constraints on cosmological parameters. We re-derive the two-point correlation function of clusters of galaxies for OCDM and LambdaCDM cosmological models, and we compare these results with the observed spatial correlation function for clusters in RASS1 (ROSAT All-Sky Survey 1), and in XBACs (X-RAY Brighest Abell-Type) samples. The comparison shows that the best agreement is obtained for the LambdaCDM model with Omega=0.3. The values of the correlation length obtained, (r_simeq 28.2 pm 5.2 rm h^{-1}} Mpc for LambdaCDM), are larger than those found in the literature and comparable with the results found in Borgani, Plionis & Kolokotronis (1999). (REST IN THE PAPER ABSTRACT)
Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy halos, independent of the details of how galaxies populate dark matter halos. This finding makes it possible to determine the dark matter clustering from measurements of galaxy-galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We generalise the approach of Baldauf et al. (2010) to remove small scale information (below 2 and 4 Mpc/h for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 sq. deg., containing 69150, 62150, and 35088 galaxies with mean redshifts of 0.11, 0.28, and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both sigma_8 and Omega_m (and marginalise over non-linear galaxy bias) in a flat LCDM model, the best-constrained quantity is sigma_8 (Omega_m/0.25)^{0.57}=0.80 +/- 0.05 (1-sigma, stat. + sys.), where statistical and systematic errors have comparable contributions, and we fixed n_s=0.96 and h=0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with WMAP7 CMB data, constraints on sigma_8, Omega_m, H_0, w_{de} and sum m_{ u} become 30--80 per cent tighter than with CMB data alone, since our data break several parameter degeneracies.
We present cosmological constraints from measurements of the gas mass fraction, $f_{gas}$, for massive, dynamically relaxed galaxy clusters. Our data set consists of Chandra observations of 40 such clusters, identified in a comprehensive search of the Chandra archive, as well as high-quality weak gravitational lensing data for a subset of these clusters. Incorporating a robust gravitational lensing calibration of the X-ray mass estimates, and restricting our measurements to the most self-similar and accurately measured regions of clusters, significantly reduces systematic uncertainties compared to previous work. Our data for the first time constrain the intrinsic scatter in $f_{gas}$, $(7.4pm2.3)$% in a spherical shell at radii 0.8-1.2 $r_{2500}$, consistent with the expected variation in gas depletion and non-thermal pressure for relaxed clusters. From the lowest-redshift data in our sample we obtain a constraint on a combination of the Hubble parameter and cosmic baryon fraction, $h^{3/2}Omega_b/Omega_m=0.089pm0.012$, that is insensitive to the nature of dark energy. Combined with standard priors on $h$ and $Omega_b h^2$, this provides a tight constraint on the cosmic matter density, $Omega_m=0.27pm0.04$, which is similarly insensitive to dark energy. Using the entire cluster sample, extending to $z>1$, we obtain consistent results for $Omega_m$ and interesting constraints on dark energy: $Omega_Lambda=0.65^{+0.17}_{-0.22}$ for non-flat $Lambda$CDM models, and $w=-0.98pm0.26$ for flat constant-$w$ models. Our results are both competitive and consistent with those from recent CMB, SNIa and BAO data. We present constraints on models of evolving dark energy from the combination of $f_{gas}$ data with these external data sets, and comment on the possibilities for improved $f_{gas}$ constraints using current and next-generation X-ray observatories and lensing data. (Abridged)
We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg$^2$ of $griz$ imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while blind to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat $Lambda$CDM and $w$CDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for $Lambda$CDM) or 7 (for $w$CDM) cosmological parameters including the neutrino mass density and including the 457 $times$ 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions, and from their combination obtain $S_8 equiv sigma_8 (Omega_m/0.3)^{0.5} = 0.783^{+0.021}_{-0.025}$ and $Omega_m = 0.264^{+0.032}_{-0.019}$ for $Lambda$CDM for $w$CDM, we find $S_8 = 0.794^{+0.029}_{-0.027}$, $Omega_m = 0.279^{+0.043}_{-0.022}$, and $w=-0.80^{+0.20}_{-0.22}$ at 68% CL. The precision of these DES Y1 results rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for $S_8$ and $Omega_m$ are lower than the central values from Planck ...
We present the first cosmology results from large-scale structure in the Dark Energy Survey (DES) spanning 5000 deg$^2$. We perform an analysis combining three two-point correlation functions (3$times$2pt): (i) cosmic shear using 100 million source galaxies, (ii) galaxy clustering, and (iii) the cross-correlation of source galaxy shear with lens galaxy positions. The analysis was designed to mitigate confirmation or observer bias; we describe specific changes made to the lens galaxy sample following unblinding of the results. We model the data within the flat $Lambda$CDM and $w$CDM cosmological models. We find consistent cosmological results between the three two-point correlation functions; their combination yields clustering amplitude $S_8=0.776^{+0.017}_{-0.017}$ and matter density $Omega_{mathrm{m}} = 0.339^{+0.032}_{-0.031}$ in $Lambda$CDM, mean with 68% confidence limits; $S_8=0.775^{+0.026}_{-0.024}$, $Omega_{mathrm{m}} = 0.352^{+0.035}_{-0.041}$, and dark energy equation-of-state parameter $w=-0.98^{+0.32}_{-0.20}$ in $w$CDM. This combination of DES data is consistent with the prediction of the model favored by the Planck 2018 cosmic microwave background (CMB) primary anisotropy data, which is quantified with a probability-to-exceed $p=0.13$ to $0.48$. When combining DES 3$times$2pt data with available baryon acoustic oscillation, redshift-space distortion, and type Ia supernovae data, we find $p=0.34$. Combining all of these data sets with Planck CMB lensing yields joint parameter constraints of $S_8 = 0.812^{+0.008}_{-0.008}$, $Omega_{mathrm{m}} = 0.306^{+0.004}_{-0.005}$, $h=0.680^{+0.004}_{-0.003}$, and $sum m_{ u}<0.13 ;mathrm{eV; (95% ;CL)}$ in $Lambda$CDM; $S_8 = 0.812^{+0.008}_{-0.008}$, $Omega_{mathrm{m}} = 0.302^{+0.006}_{-0.006}$, $h=0.687^{+0.006}_{-0.007}$, and $w=-1.031^{+0.030}_{-0.027}$ in $w$CDM. (abridged)
(abridged) We present cosmological constraints obtained from galaxy clusters identified by their Sunyaev-Zeldovich effect signature in the 2500 square degree South Pole Telescope Sunyaev Zeldovich survey. We consider the 377 cluster candidates identified at z>0.25 with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a LCDM cosmology, where the species-summed neutrino mass has the minimum allowed value (mnu = 0.06 eV) from neutrino oscillation experiments, we combine the cluster data with a prior on H0 and find sigma_8 = 0.797+-0.031 and Omega_m = 0.289+-0.042, with the parameter combination sigma_8(Omega_m/0.27)^0.3 = 0.784+-0.039. These results are in good agreement with constraints from the CMB from SPT, WMAP, and Planck, as well as with constraints from other cluster datasets. Adding mnu as a free parameter, we find mnu = 0.14+-0.08 eV when combining the SPT cluster data with Planck CMB data and BAO data, consistent with the minimum allowed value. Finally, we consider a cosmology where mnu and N_eff are fixed to the LCDM values, but the dark energy equation of state parameter w is free. Using the SPT cluster data in combination with an H0 prior, we measure w = -1.28+-0.31, a constraint consistent with the LCDM cosmological model and derived from the combination of growth of structure and geometry. When combined with primarily geometrical constraints from Planck CMB, H0, BAO and SNe, adding the SPT cluster data improves the w constraint from the geometrical data alone by 14%, to w = -1.023+-0.042.