No Arabic abstract
The double humped SED (Spectral Energy Distribution) of blazars, and their flaring phenomena can be explained by various leptonic and hadronic models. However, accurate modeling of the high frequency component and clear identification of the correct emission mechanism would require simultaneous measurements in both the MeV-GeV band and the TeV band. Due to the differences in the sensitivity and the field of view of the instruments required to do these measurements, it is essential to identify active states of blazars likely to be detected with TeV instruments. Using a reasonable intergalactic attenuation model, various extrapolations of the EGRET spectra, as a proxy for GLAST (Gamma-ray Large Area Space Telescope) measurements, are made into TeV energies for selecting EGRET blazars expected to be VHE-bright. Furthermore, estimates of the threshold fluxes at GLAST energies are provided, at which sources are expected to be detectable at TeV energies, with Cherenkov telescopes like HESS, MAGIC or VERITAS.
More than a dozen blazars are known to be emitters of multi-TeV gamma rays, often with strong and rapid flaring activity. By interacting with photons of the cosmic microwave and infrared backgrounds, these gamma rays inevitably produce electron-positron pairs, which in turn radiate secondary inverse Compton gamma rays in the GeV-TeV range with a characteristic time delay that depends on the properties of the intergalactic magnetic field (IGMF). For sufficiently weak IGMF, such pair echo emission may be detectable by the Gamma-ray Large Area Space Telescope (GLAST), providing valuable information on the IGMF. We perform detailed calculations of the time-dependent spectra of pair echos from flaring TeV blazars such as Mrk 501 and PKS 2155-304, taking proper account of the echo geometry and other crucial effects. In some cases, the presence of a weak but non-zero IGMF may enhance the detectability of echos. We discuss the quantitative constraints that can be imposed on the IGMF from GLAST observations, including the case of non-detections.
The synergy of GLAST and the proposed EXIST mission as the Black Hole Finder Probe in the Beyond Einstein Program is remarkable. With its full-sky per orbit hard X-ray imaging (3-600 keV) and nuFnu sensitivity comparable to GLAST, EXIST could measure variability and spectra of Blazars in the hard X-ray synchrotron component simultaneous with GLAST (~10-100GeV) measures of the inverse Compton component, thereby uniquely constraining intrinsic source spectra and allowing measured high energy spectral breaks to measure the cosmic diffuse extra-galactic background light (EBL) by determining the intervening diffuse IR photon field required to yield the observed break from photon-photon absorption. Such studies also constrain the physics of jets (and parameters and indeed the validity of SSC models) and the origin of the >100 MeV gamma-ray diffuse background likely arising from Blazars and jet-dominated sources. An overview of the EXIST mission, which could fly in the GLAST era, is given together with a synopsis of other key synergies of GLAST-EXIST science.
The close relation between ground-based TeV observations and satellite borne $gamma$-ray measurements has been important for the understanding of blazars. The observations which involve the TeV component in blazar studies are reviewed.
The recently completed High Altitude Water Cherenkov (HAWC) gamma-ray observatory has been taking data with a partial array for more than one year and is now operating with >95% duty cycle in its full configuration. With an instantaneous field of view of 2 sr, two-thirds of the sky is surveyed every day at gamma-ray energies between approximately 100 GeV and 100 TeV. Any source location in the field of view can be monitored each day, with an exposure of up to $sim$ 6 hours. These unprecedented observational capabilities allow us to continuously scan the highly variable extra-galactic gamma-ray sky. By monitoring the flaring behavior of Active Galactic Nuclei we aim to significantly increase the observational data base for characterizing particle acceleration mechanisms in these sources and for studying cosmological properties like the extra-galactic background light. In this work we present first studies of data taken between June 2013 and July 2014 with a partial array configuration. Flux light curves, binned in week-long intervals, for the TeV-emitting blazars Markarian 421 and 501 are discussed with respect to indications of flaring states and we highlight coincident multi-wavelength observations. Results for both sources show indications of gamma-ray flare observations and demonstrate that a water Cherenkov detector can monitor TeV-scale variability of extra-galactic sources on weekly time scales. The analysis methods presented here can provide daily flux measurements with a minimum time interval of one transit and will be applied to new data from the completed HAWC array for monitoring of blazars and other transients.
In this first systematic attempt to characterise the intranight optical variability (INOV) of TeV detected blazars, we have monitored a well defined set of 9 TeV blazars on total 26 nights during 2004-2010. In this R (or V)-band monitoring programme only one blazar was monitored per night for a minimum duration of 4 hours. Using the CCD, an INOV detection threshold of ~ 1-2 % was achieved in the densely sampled DLCs. We have further expanded the sample by including another 13 TeV blazars from literature. This enlarged sample of 22 TeV blazars, monitored on a total of 116 nights (including 55 nights newly reported here), has enabled us to arrive at the first estimate of the INOV duty cycle of TeV detected blazars. Applying the C-test, the INOV DC is found to be 59 %, which decreases to 47 % if only INOV fractional amplitudes above 3 % are considered. These observations also permit, for the first time, a comparison of the INOV characteristics of the two major subclasses of TeV detected BL Lacs, namely LBLs and HBLs, for which we find the INOV DCs to be ~ 63 % and ~ 38 %, respectively. This demonstrates that the INOV differential between LBLs and HBLs persists even when only their TeV detected subsets are considered. Despite dense sampling, the intranight light curves of the 22 TeV blazars have not revealed even a single feature on time scale substantially shorter than 1 hour, even though the inner jets of TeV blazars are believed to have exceptionally large bulk Lorentz factors (and correspondingly stronger time compression). An intriguing feature, clearly detected in the light curve of the HBL J1555+1111, is a 4 per cent `dip on a 1 hour timescale. This unique feature could have arisen from absorption in a dusty gas cloud, occulting a superluminally moving optical knot in the parsec scale jet of this relatively luminous BL Lacs object.