Do you want to publish a course? Click here

Energy Spectra of Elemental Groups of Cosmic Rays: Update on the KASCADE Unfolding Analysis

376   0   0.0 ( 0 )
 Added by Andreas Haungs
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The KASCADE experiment measures extensive air showers induced by cosmic rays in the energy range around the so-called knee. The data of KASCADE have been used in a composition analysis showing the knee at 3-5 PeV to be caused by a steepening in the light-element spectra. Since the applied unfolding analysis depends crucially on simulations of air showers, different high energy hadronic interaction models (QGSJet and SIBYLL) were used. The results have shown a strong dependence of the relative abundance of the individual mass groups on the underlying model. In this update of the analysis we apply the unfolding method with a different low energy interaction model (FLUKA instead of GHEISHA) in the simulations. While the resulting individual mass group spectra do not change significantly, the overall description of the measured data improves by using the FLUKA model. In addition data in a larger range of zenith angle are analysed. The new results are completely consistent, i.e. there is no hint to any severe problem in applying the unfolding analysis method to KASCADE data.



rate research

Read More

The KASCADE-Grande air shower experiment [W. Apel, et al. (KASCADE-Grande collaboration), Nucl. Instrum. Methods A 620 (2010) 202] consists of, among others, a large scintillator array for measurements of charged particles, Nch, and of an array of shielded scintillation counters used for muon counting, Nmu. KASCADE-Grande is optimized for cosmic ray measurements in the energy range 10 PeV to about 2000 PeV, where exploring the composition is of fundamental importance for understanding the transition from galactic to extragalactic origin of cosmic rays. Following earlier studies of the all-particle and the elemental spectra reconstructed in the knee energy range from KASCADE data [T. Antoni, et al. (KASCADE collaboration), Astropart. Phys. 24 (2005) 1], we have now extended these measurements to beyond 200 PeV. By analysing the two-dimensional shower size spectrum Nch vs. Nmu for nearly vertical events, we reconstruct the energy spectra of different mass groups by means of unfolding methods over an energy range where the detector is fully efficient. The procedure and its results, which are derived based on the hadronic interaction model QGSJET-II-02 and which yield a strong indication for a dominance of heavy mass groups in the covered energy range and for a knee-like structure in the iron spectrum at around 80 PeV, are presented. This confirms and further refines the results obtained by other analyses of KASCADE-Grande data, which already gave evidence for a knee-like structure in the heavy component of cosmic rays at about 80 PeV [W. Apel, et al. (KASCADE-Grande collaboration), Phys. Rev. Lett. 107 (2011) 171104].
The KASCADE-Grande experiment, located at KIT-Karlsruhe, Germany, consists of a large scintillator array for measurements of charged particles, N_ch, and of an array of shielded scintillation counters used for muon counting, N_mu. KASCADE-Grande is optimized for cosmic ray measurements in the energy range 10 PeV to 1000 PeV, thereby enabling the verification of a knee in the iron spectrum expected at approximately 100 PeV. Exploring the composition in this energy range is of fundamental importance for understanding the transition from galactic to extragalactic cosmic rays. Following earlier studies of elemental spectra reconstructed in the knee energy range from KASCADE data, we have now extended these measurements to beyond 100 PeV. By analysing the two-dimensional shower size spectrum N_ch vs. N_mu, we reconstruct the energy spectra of different mass groups by means of unfolding methods. The procedure and its results, giving evidence for a knee-like structure in the spectrum of iron nuclei, will be presented.
We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment CREAM (Cosmic Ray Energetics And Mass). The instrument (CREAM-II) was comprised of detectors based on different techniques (Cherenkov light, specific ionization in scintillators and silicon sensors) to provide a redundant charge identification and a thin ionization calorimeter capable of measuring the energy of cosmic rays up to several hundreds of TeV. The data analysis is described and the individual energy spectra of C, O, Ne, Mg, Si and Fe are reported up to ~ 10^14 eV. The spectral shape looks nearly the same for all the primary elements and can be expressed as a power law in energy E^{-2.66+/-0.04}. The nitrogen absolute intensity in the energy range 100-800 GeV/n is also measured.
The detection of high-energy cosmic rays above a few hundred TeV is realized by the observation of extensive air-showers. By using the multi-detector setup of KASCADE-Grande, energy spectrum, elemental composition, and anisotropies of high-energy cosmic rays in the energy range from below the knee up to 2 EeV are investigated. In addition, the large high-quality data set permits distinct tests of the validity of hadronic interaction models used in interpreting air-shower measurements. After more than 16 years, the KASCADE-Grande experiment terminated measurements end of 2012. This contribution will give an overview of the main results of the data analysis achieved so far, and will report about the status of KCDC, the KASCADE Cosmic-ray Data Center, where via a web-based interface the data will be made available for the interested public.
The energy spectrum of cosmic rays between 10**16 eV and 10**18 eV, derived from measurements of the shower size (total number of charged particles) and the total muon number of extensive air showers by the KASCADE-Grande experiment, is described. The resulting all-particle energy spectrum exhibits strong hints for a hardening of the spectrum at approximately 2x10**16 eV and a significant steepening at c. 8x10**16 eV. These observations challenge the view that the spectrum is a single power law between knee and ankle. Possible scenarios generating such features are discussed in terms of astrophysical processes that may explain the transition region from galactic to extragalactic origin of cosmic rays.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا