Do you want to publish a course? Click here

Monotonicity theorems for Laplace Beltrami operator on Riemannian manifolds

193   0   0.0 ( 0 )
 Added by Lei Zhang
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

For free boundary problems on Euclidean spaces, the monotonicity formulas of Alt-Caffarelli-Friedman and Caffarelli-Jerison-Kenig are cornerstones for the regularity theory as well as the existence theory. In this article we establish the analogs of these results for the Laplace-Beltrami operator on Riemannian manifolds. As an application we show that our monotonicity theorems can be employed to prove the Lipschitz continuity for the solutions of a general class of two-phase free boundary problems on Riemannian manifolds.



rate research

Read More

In this paper we provide some local and global splitting results on complete Riemannian manifolds with nonnegative Ricci curvature. We achieve the splitting through the analysis of some pointwise inequalities of Modica type which hold true for every bounded solution to a semilinear Poisson equation. More precisely, we prove that the existence of a nonconstant bounded solution $u$ for which one of the previous inequalities becomes an equality at some point leads to the splitting results as well as to a classification of such a solution $u$.
We prove an existence result for the Poisson equation on non-compact Riemannian manifolds satisfying weighted Poincare inequalities outside compact sets. Our result applies to a large class of manifolds including, for instance, all non-parabolic manifolds with minimal positive Greens function vanishing at infinity. On the source function we assume a sharp pointwise decay depending on the weight appearing in the Poincare inequality and on the behavior of the Ricci curvature at infinity. We do not require any curvature or spectral assumptions on the manifold.
We investigate existence and uniqueness of bounded solutions of parabolic equations with unbounded coefficients in $Mtimes mathbb R_+$, where $M$ is a complete noncompact Riemannian manifold. Under specific assumptions, we establish existence of solutions satisfying prescribed conditions at infinity, depending on the direction along which infinity is approached. Moreover, the large-time behavior of such solutions is studied. We consider also elliptic equations on $M$ with similar conditions at infinity.
We establish necessary conditions for the existence of solutions to a class of semilinear hyperbolic problems on complete noncompact Riemannian manifolds, extending some nonexistence results for the wave operator with power nonlinearity on the whole Euclidean space. A general weight function depending on spacetime is allowed in front of the power nonlinearity.
235 - Andrei Moroianu 2009
The moduli space NK of infinitesimal deformations of a nearly Kahler structure on a compact 6-dimensional manifold is described by a certain eigenspace of the Laplace operator acting on co-closed primitive (1,1) forms. Using the Hermitian Laplace operator and some representation theory, we compute the space NK on all 6-dimensional homogeneous nearly Kahler manifolds. It turns out that the nearly Kahler structure is rigid except for the flag manifold F(1,2)=SU_3/T^2, which carries an 8-dimensional moduli space of infinitesimal nearly Kahler deformations, modeled on the Lie algebra su_3 of the isometry group.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا