Do you want to publish a course? Click here

Two-dimensional magnetism in the pnictide superconductor parent material SrFeAsF probed by muon-spin relaxation

145   0   0.0 ( 0 )
 Added by Peter Baker
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report muon-spin relaxation measurements on SrFeAsF, which is the parent compound of a newly discovered iron-arsenic-fluoride based series of superconducting materials. We find that this material has very similar magnetic properties to LaFeAsO, such as separated magnetic and structural transitions (TN = 120 K, Ts = 175 K), contrasting with SrFe2As2 where they are coincident. The muon oscillation frequencies fall away very sharply at TN, which suggests that the magnetic exchange between the layers is weaker than in comparable oxypnictide compounds. This is consistent with our specific heat measurements, which find that the entropy change S = 0.05 J/mol/K largely occurs at the structural transition and there is no anomaly at TN.



rate research

Read More

319 - Risdiana , T. Adachi , N. Oki 2007
Muon-spin-relaxation measurements have been performed for the partially Zn-substituted La_2-x_Sr_x_Cu_1-y_Zn_y_O_4_ with y=0-0.10 in the overdoped regime up to x=0.30. In the 3 % Zn-substituted samples up to x=0.27, exponential-like depolarization of muon spins has been observed at low temperatures, indicating Zn-induced slowing-down of the Cu-spin fluctuations. The depolarization rate decreases with increasing x and almost no fast depolarization of muon spins has been observed for x=0.30 where superconductivity disappears. The present results suggest that the dynamical stripe correlations exist in the whole superconducting regime of La_2-x_Sr_x_CuO_4_ and that there is no quantum critical point at x~0.19.
We present a low-energy muon-spin-rotation study of the magnetic and superconducting properties of YBa2Cu3O7/PrBa2Cu3O7 trilayer and bilayer heterostructures. By determining the magnetic-field profiles throughout these structures we show that a finite superfluid density can be induced in otherwise semiconducting PrBa2Cu3O7 layers when juxtaposed to YBa2Cu3O7 electrodes while the intrinsic antiferromagnetic order is unaffected.
168 - Risdiana , T. Adachi , N. Oki 2010
Muon-spin-relaxation (muSR) measurements have been performed for the partially Zn-substituted electron-doped high-T_c_ superconductor Pr_0.86_LaCe_0.14_Cu_1-y_Zn_y_O_4+alpha-delta_ with y=0-0.05 and the reduced oxygen content delta=0-0.09, in order to investigate nonmagnetic Zn-impurity effects on the Cu-spin dynamics. For all the measured samples with delta=0.01-0.09, it has been found that a fast depolarization of muon spins is observed below 100 K due to the effect of Pr^3+^ moments and that the muSR time spectrum in the long-time region above 5 mu-sec increases with decreasing temperature at low temperatures below 30 K possibly due to slowing down of the Cu-spin fluctuations assisted by Pr^3+^ moments. No Zn-induced slowing down of the Cu-spin fluctuations has been observed for moderately oxygen-reduced samples with delta=0.04-0.09, which is very different from the muSR results of La_2-x_Sr_x_Cu_1-y_Zn_y_O_4_. The possible reason may be that there are no dynamical stripe correlations of spins and electrons in the electron-doped high-T_c_ cuprates or that the effect of Pr^3+^ moments on the muSR spectra is stronger than that of a small amount of Zn impurities.
Recent discovery of oxypnictide superconductor LaFeAs(O,F) (LFAO-F) with the critical temperature (Tc) of 26 K and succeeding revelation of much increased Tc upon substitution of La for other rare earth elements (such as Sm, leading to ~43 K) and application of pressure for LFAO-F (~ 43 K) has triggered broad interest in the mechanism yielding relatively high Tc in this new class of compounds. While they share a feature with high-Tc cuprates that superconductivity occurs upon carrier doping to pristine compound which exhibits magnetism, they also resemble the heavy-fermion compounds in the sense that superconductivity appears in the vicinity of magnetic phase. Investigation of electronic states near the boundary between these two phases might provide some useful information on the mechanism of superconductivity, as it has been proved to be the case in many exotic superconductors. Here we show by muon experiment in the LFAO-F compound that a macroscopic phase separation into superconducting and spin glass-like magnetic phases occurs at x=0.06 that is near the phase boundary, where both the magnetism and superconductivity develop simultaneously below a common Tc ~ 18 K. This accordance strongly suggests intimate relationship between magnetism and superconductivity typically found in heavy-fermion systems near the quantum critical point.
We report a detailed $mu$SR study of the pressure evolution of the magnetic order in the manganese based pnictide MnP, which has been recently found to undergo a superconducting transition under pressure once the magnetic ground state is suppressed. Using the muon as a volume sensitive local magnetic probe, we identify a ferromagnetic state as well as two incommensurate helical states (with propagation vectors ${bf Q}$ aligned along the crystallographic $c-$ and $b-$directions, respectively) which transform into each other through first order phase transitions as a function of pressure and temperature. Our data appear to support that the magnetic state from which superconductivity develops at higher pressures is an incommensurate helical phase.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا