Do you want to publish a course? Click here

Automatic Generation of the Axial Lines of Urban Environments to Capture What We Perceive

359   0   0.0 ( 0 )
 Added by Bin Jiang
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

Based on the concepts of isovists and medial axes, we developed a set of algorithms that can automatically generate axial lines for representing individual linearly stretched parts of open space of an urban environment. Open space is the space between buildings, where people can freely move around. The generation of the axial lines has been a key aspect of space syntax research, conventionally relying on hand-drawn axial lines of an urban environment, often called axial map, for urban morphological analysis. Although various attempts have been made towards an automatic solution, few of them can produce the axial map that consists of the least number of longest visibility lines, and none of them really works for different urban environments. Our algorithms provide a better solution than existing ones. Throughout this paper, we have also argued and demonstrated that the axial lines constitute a true skeleton, superior to medial axes, in capturing what we perceive about the urban environment. Keywords: Visibility, space syntax, topological analysis, medial axes, axial lines, isovists



rate research

Read More

Origin-Destination (OD) flow, as an abstract representation of the object`s movement or interaction, has been used to reveal the urban mobility and human-land interaction pattern. As an important spatial analysis approach, the clustering methods of point events have been extended to OD flows to identify the dominant trends and spatial structures of urban mobility. However, the existing methods for OD flow cluster-detecting are limited both in specific spatial scale and the uncertain result due to different parameters setting, which is difficult for complicated OD flows clustering under spatial heterogeneity. To address these limitations, in this paper, we proposed a novel OD flows cluster-detecting method based on the OPTICS algorithm which can identify OD flow clusters with various aggregation scales. The method can adaptively determine parameter value from the dataset without prior knowledge and artificial intervention. Experiments indicated that our method outperformed three state-of-the-art methods with more accurate and complete of clusters and less noise. As a case study, our method is applied to identify the potential routes for public transport service settings by detecting OD flow clusters within urban travel data.
We consider incidences among colored sets of lines in $mathbb{R}^d$ and examine whether the existence of certain concurrences between lines of $k$ colors force the existence of at least one concurrence between lines of $k+1$ colors. This question is relevant for problems in 3D reconstruction in computer vision.
Choroid plexuses (CP) are structures of the ventricles of the brain which produce most of the cerebrospinal fluid (CSF). Several postmortem and in vivo studies have pointed towards their role in the inflammatory process in multiple sclerosis (MS). Automatic segmentation of CP from MRI thus has high value for studying their characteristics in large cohorts of patients. To the best of our knowledge, the only freely available tool for CP segmentation is FreeSurfer but its accuracy for this specific structure is poor. In this paper, we propose to automatically segment CP from non-contrast enhanced T1-weighted MRI. To that end, we introduce a new model called Axial-MLP based on an assembly of Axial multi-layer perceptrons (MLPs). This is inspired by recent works which showed that the self-attention layers of Transformers can be replaced with MLPs. This approach is systematically compared with a standard 3D U-Net, nnU-Net, Freesurfer and FastSurfer. For our experiments, we make use of a dataset of 141 subjects (44 controls and 97 patients with MS). We show that all the tested deep learning (DL) methods outperform FreeSurfer (Dice around 0.7 for DL vs 0.33 for FreeSurfer). Axial-MLP is competitive with U-Nets even though it is slightly less accurate. The conclusions of our paper are two-fold: 1) the studied deep learning methods could be useful tools to study CP in large cohorts of MS patients; 2)~Axial-MLP is a potentially viable alternative to convolutional neural networks for such tasks, although it could benefit from further improvements.
We present updated values for the mass-mixing parameters relevant to neutrino oscillations, with particular attention to emerging hints in favor of theta_13>0. We also discuss the status of absolute neutrino mass observables, and a possible approach to constrain theoretical uncertainties in neutrinoless double beta decay. Desiderata for all these issues are also briefly mentioned.
178 - G. A. Kozlov 2013
We analyze the critical phenomena in the theory of strong interactions at high temperatures starting from first principles. The model is based on the dual Yang-Mills theory with scalar degrees of freedom - the dilatons. The latter are produced due to the spontaneous breaking of an approximate scale symmetry. The phase transitions are considered in systems where the field conjugate to the order parameter has the (critical) chiral end mode. The hiral end point (ChEP) is a distinct singular feature existence of which is dictated by the chiral dynamics. The physical approach the effective ChEP is studied via the influence fluctuations of two-body Bose-Einstein correlation function for observed particles to which the chiral end mode couples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا