Do you want to publish a course? Click here

Axial multi-layer perceptron architecture for automatic segmentation of choroid plexus in multiple sclerosis

285   0   0.0 ( 0 )
 Added by Olivier Colliot
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Choroid plexuses (CP) are structures of the ventricles of the brain which produce most of the cerebrospinal fluid (CSF). Several postmortem and in vivo studies have pointed towards their role in the inflammatory process in multiple sclerosis (MS). Automatic segmentation of CP from MRI thus has high value for studying their characteristics in large cohorts of patients. To the best of our knowledge, the only freely available tool for CP segmentation is FreeSurfer but its accuracy for this specific structure is poor. In this paper, we propose to automatically segment CP from non-contrast enhanced T1-weighted MRI. To that end, we introduce a new model called Axial-MLP based on an assembly of Axial multi-layer perceptrons (MLPs). This is inspired by recent works which showed that the self-attention layers of Transformers can be replaced with MLPs. This approach is systematically compared with a standard 3D U-Net, nnU-Net, Freesurfer and FastSurfer. For our experiments, we make use of a dataset of 141 subjects (44 controls and 97 patients with MS). We show that all the tested deep learning (DL) methods outperform FreeSurfer (Dice around 0.7 for DL vs 0.33 for FreeSurfer). Axial-MLP is competitive with U-Nets even though it is slightly less accurate. The conclusions of our paper are two-fold: 1) the studied deep learning methods could be useful tools to study CP in large cohorts of MS patients; 2)~Axial-MLP is a potentially viable alternative to convolutional neural networks for such tasks, although it could benefit from further improvements.



rate research

Read More

Brain lesion volume measured on T2 weighted MRI images is a clinically important disease marker in multiple sclerosis (MS). Manual delineation of MS lesions is a time-consuming and highly operator-dependent task, which is influenced by lesion size, shape and conspicuity. Recently, automated lesion segmentation algorithms based on deep neural networks have been developed with promising results. In this paper, we propose a novel recurrent slice-wise attention network (RSANet), which models 3D MRI images as sequences of slices and captures long-range dependencies through a recurrent manner to utilize contextual information of MS lesions. Experiments on a dataset with 43 patients show that the proposed method outperforms the state-of-the-art approaches. Our implementation is available online at https://github.com/tinymilky/RSANet.
The automated detection of cortical lesions (CLs) in patients with multiple sclerosis (MS) is a challenging task that, despite its clinical relevance, has received very little attention. Accurate detection of the small and scarce lesions requires specialized sequences and high or ultra-high field MRI. For supervised training based on multimodal structural MRI at 7T, two experts generated ground truth segmentation masks of 60 patients with 2014 CLs. We implemented a simplified 3D U-Net with three resolution levels (3D U-Net-). By increasing the complexity of the task (adding brain tissue segmentation), while randomly dropping input channels during training, we improved the performance compared to the baseline. Considering a minimum lesion size of 0.75 {mu}L, we achieved a lesion-wise cortical lesion detection rate of 67% and a false positive rate of 42%. However, 393 (24%) of the lesions reported as false positives were post-hoc confirmed as potential or definite lesions by an expert. This indicates the potential of the proposed method to support experts in the tedious process of CL manual segmentation.
This paper aims to contribute in bench-marking the automatic polyp segmentation problem using generative adversarial networks framework. Perceiving the problem as an image-to-image translation task, conditional generative adversarial networks are utilized to generate masks conditioned by the images as inputs. Both generator and discriminator are convolution neural networks based. The model achieved 0.4382 on Jaccard index and 0.611 as F2 score.
The choroid provides oxygen and nourishment to the outer retina thus is related to the pathology of various ocular diseases. Optical coherence tomography (OCT) is advantageous in visualizing and quantifying the choroid in vivo. (1) The lower boundary of the choroid (choroid-sclera interface) in OCT is fuzzy, which makes the automatic segmentation difficult and inaccurate. (2) The visualization of the choroid is hindered by the vessel shadows from the superficial layers of the inner retina. In this paper, we propose to incorporate medical and imaging prior knowledge with deep learning to address these two problems. We propose a biomarker infused global-to-local network for the choroid segmentation. It leverages the choroidal thickness, a primary biomarker in clinic, as a constraint to improve the segmentation accuracy. We also design a global-to-local strategy in the choroid segmentation: a global module is used to segment all the retinal and choroidal layers simultaneously for suppressing overfitting and providing global structure information, then a local module is used to refine the segmentation with the biomarker infusion. To eliminate the retinal vessel shadows, we propose a pipeline that firstly use anatomical and OCT imaging knowledge to locate the shadows using their projection on the retinal pigment epithelium layer, then the contents of the choroidal vasculature at the shadow locations are predicted with an edge-to-texture generative adversarial inpainting network. The experiments show our method outperforms the existing methods on both the segmentation and shadow elimination tasks. We further apply the proposed method in a clinical prospective study for understanding the pathology of glaucoma by detecting the structure and vascular changes of the choroid related to the elevation of intra-ocular pressure.
Gliomas are among the most aggressive and deadly brain tumors. This paper details the proposed Deep Neural Network architecture for brain tumor segmentation from Magnetic Resonance Images. The architecture consists of a cascade of three Deep Layer Aggregation neural networks, where each stage elaborates the response using the feature maps and the probabilities of the previous stage, and the MRI channels as inputs. The neuroimaging data are part of the publicly available Brain Tumor Segmentation (BraTS) 2020 challenge dataset, where we evaluated our proposal in the BraTS 2020 Validation and Test sets. In the Test set, the experimental results achieved a Dice score of 0.8858, 0.8297 and 0.7900, with an Hausdorff Distance of 5.32 mm, 22.32 mm and 20.44 mm for the whole tumor, core tumor and enhanced tumor, respectively.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا