No Arabic abstract
Brane cosmology presents many interesting possibilities including: phantom acceleration (w<-1), self-acceleration, unification of dark energy with inflation, transient acceleration, loitering cosmology, new singularities at which the Hubble parameter remains finite, cosmic mimicry, etc. The existence of a time-like extra dimension can result in a singularity-free cyclic cosmology.
A recently proposed mechanism for large-scale structure in string cosmology --based on massless axionic seeds-- is further analyzed and extended to the acoustic-peak region. Existence, structure, and normalization of the peaks turn out to depend crucially on the overall evolution of extra dimensions during the pre-big bang phase: conversely, precise cosmic microwave background anisotropy data in the acoustic-peak region will provide, within the next decade, a window on string-theorys extra dimensions before their eventual compactification.
An alternative to dark energy as an explanation for the present phase of accelerated expansion of the Universe is that the Friedmann equation is modified, e.g. by extra dimensional gravity, on large scales. We explore a natural parametrization of a general modified Friedmann equation, and find that the present supernova type Ia and cosmic microwave background data prefer a correction of the form 1/H over a cosmological constant. We also explore the constraints that can be expected in the future, and find that there are good prospects for distinguishing this model from the standard cosmological constant to very high significance if one combines supernova data with a precise measurement of the matter density.
We examine the late-time (nucleosynthesis and later) cosmological implications of brane-world scenarios having large (millimeter sized) extra dimensions. In particular, recent proposals for understanding why the extra dimensions are so large in these models indicate that moduli like the radion appear (to four-dimensional observers) to be extremely light, with a mass of order 10^{-33} eV, allowing them to play the role of the light scalar of quintessence models. The radion-as-quintessence solves a long-standing problem since its small mass is technically natural, in that it is stable against radiative corrections. Its challenges are to explain why such a light particle has not been seen in precision tests of gravity, and why Newtons constant has not appreciably evolved since nucleosynthesis. We find the couplings suggested by stabilization models can provide explanations for both of these questions. We identify the features which must be required of any earlier epochs of cosmology in order for these explanations to hold.
We reconsider theories with low gravitational (or string) scale M_* where Newtons constant is generated via new large-volume spatial dimensions, while Standard Model states are localized to a 3-brane. Utilizing compact hyperbolic manifolds (CHMs) we show that the spectrum of Kaluza-Klein (KK) modes is radically altered. This allows an early universe cosmology with normal evolution up to substantial temperatures, and completely negates the constraints on M_* arising from astrophysics. Furthermore, an exponential hierarchy between the usual Planck scale and the true fundamental scale of physics can emerge with only order unity coefficients. The linear size of the internal space remains small. The proposal has striking testable signatures.
A web of interlocking observations has established that the expansion of the Universe is speeding up and not slowing, revealing the presence of some form of repulsive gravity. Within the context of general relativity the cause of cosmic acceleration is a highly elastic (psim -rho), very smooth form of energy called ``dark energy accounting for about 75% of the Universe. The ``simplest explanation for dark energy is the zero-point energy density associated with the quantum vacuum; however, all estimates for its value are many orders-of-magnitude too large. Other ideas for dark energy include a very light scalar field or a tangled network of topological defects. An alternate explanation invokes gravitational physics beyond general relativity. Observations and experiments underway and more precise cosmological measurements and laboratory experiments planned for the next decade will test whether or not dark energy is the quantum energy of the vacuum or something more exotic, and whether or not general relativity can self consistently explain cosmic acceleration. Dark energy is the most conspicuous example of physics beyond the standard model and perhaps the most profound mystery in all of science.