Do you want to publish a course? Click here

Quantitative Measurements of CME-driven Shocks from LASCO Observations

132   0   0.0 ( 0 )
 Added by Veronica Ontiveros
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we demonstrate that CME-driven shocks can be detected in white light coronagraph images and in which properties such as the density compression ratio and shock direction can be measured. Also, their propagation direction can be deduced via simple modeling. We focused on CMEs during the ascending phase of solar cycle 23 when the large-scale morphology of the corona was simple. We selected events which were good candidates to drive a shock due to their high speeds (V>1500 km/s). The final list includes 15 CMEs. For each event, we calibrated the LASCO data, constructed excess mass images and searched for indications of faint and relatively sharp fronts ahead of the bright CME front. We found such signatures in 86% (13/15) of the events and measured the upstream/downstream densities to estimate the shock strength. Our values are in agreement with theoretical expectations and show good correlations with the CME kinetic energy and momentum. Finally, we used a simple forward modeling technique to estimate the 3D shape and orientation of the white light shock features. We found excellent agreement with the observed density profiles and the locations of the CME source regions. Our results strongly suggest that the observed brightness enhancements result from density enhancements due to a bow-shock structure driven by the CME.



rate research

Read More

We report on the properties of halo coronal mass ejections (HCMEs) in solar cycles 23 and 24. We compare the HCMEs properties between the corresponding phases (rise, maximum, and declining) in cycles 23 and 24 in addition to comparing those between the whole cycles. Despite the significant decline in the sunspot number (SSN) in cycle 24, which dropped by 46% with respect to cycle 23, the abundance of HCMEs is similar in the two cycles. The HCME rate per SSN is 44% higher in cycle 24. In the maximum phase, cycle-24 rate normalized to SSN increased by 127% while the SSN dropped by 43%. The source longitudes of cycle-24 HCMEs are more uniformly distributed than those in cycle 23. We found that the average sky-plane speed in cycle 23 is ~16% higher than that in cycle 24. The size distributions of the associated flares between the two cycles and the corresponding phases are similar. The average speed at a central meridian distance (CMD) = 600 for cycle 23 is ~28% higher than that of cycle 24. We discuss the unusual bump in HCME activity in the declining phase of cycle 23 as due to exceptional active regions that produced many CMEs during October 2003 to October 2005. The differing HCME properties in the two cycles can be attributed to the anomalous expansion of cycle-24 CMEs. Considering the HCMEs in the rise, maximum and declining phases, we find that the maximum phase shows the highest contrast between the two cycles.
We explore the relationship among three coronal mass ejections (CMEs), observed on 28 October 2003, 7 November 2004, and 20 January 2005, the type II burst-associated shock waves in the corona and solar wind, as well as the arrival of their related shock waves and magnetic clouds at 1 AU. Using six different coronal/interplanetary density models, we calculate the speeds of shocks from the frequency drifts observed in metric and decametric radio wave data. We compare these speeds with the velocity of the CMEs as observed in the plane-of-the-sky white-light observations and calculated with a cone model for the 7 November 2004 event. We then follow the propagation of the ejecta using Interplanetary Scintillation (IPS) measurements, which were available for the 7 November 2004 and 20 January 2005 events. Finally, we calculate the travel time of the interplanetary (IP) shocks between the Sun and Earth and discuss the velocities obtained from the different data. This study highlights the difficulties in making velocity estimates that cover the full CME propagation time.
We examine the energetics of Coronal Mass Ejections (CMEs) with data from the LASCO coronagraphs on SOHO. The LASCO observations provide fairly direct measurements of the mass, velocity and dimensions of CMEs. Using these basic measurements, we determine the potential and kinetic energies and their evolution for several CMEs that exhibit a flux-rope morphology. Assuming flux conservation, we use observations of the magnetic flux in a variety of magnetic clouds near the Earth to determine the magnetic flux and magnetic energy in CMEs near the Sun. We find that the potential and kinetic energies increase at the expense of the magnetic energy as the CME moves out, keeping the total energy roughly constant. This demonstrates that flux rope CMEs are magnetically driven. Furthermore, since their total energy is constant, the flux rope parts of the CMEs can be considered to be a closed system above $sim$ 2 $R_{sun}$.
We perform four numerical magnetohydrodynamic simulations in 2.5 dimensions (2.5D) of fast Coronal Mass Ejections (CMEs) and their associated shock fronts between 10Rs and 300Rs. We investigate the relative change in the shock standoff distance, Sd, as a fraction of the CME radial half-width, Dob (i.e. Sd/Dob). Previous hydrodynamic studies have related the shock standoff distance for Earths magnetosphere to the density compression ratio (DR,Ru/Rd) measured across the bow shock (Spreiter, Summers and Alksne 1966). The DR coefficient, kdr, which is the proportionality constant between the relative standoff distance (Sd/Dob) and the compression ratio, was semi-empirically estimated as 1.1. For CMEs, we show that this value varies linearly as a function of heliocentric distance and changes significantly for different radii of curvature of the CMEs leading edge. We find that a value of 0.8+-0.1 is more appropriate for small heliocentric distances (<30Rs) which corresponds to the spherical geometry of a magnetosphere presented by Seiff (1962). As the CME propagates its cross section becomes more oblate and the kdr value increases linearly with heliocentric distance, such that kdr= 1.1 is most appropriate at a heliocentric distance of about 80Rs. For terrestrial distances (215Rs) we estimate kdr= 1.8+-0.3, which also indicates that the CME cross-sectional structure is generally more oblate than that of Earths magnetosphere. These alterations to the proportionality coefficients may serve to improve investigations into the estimates of the magnetic field in the corona upstream of a CME as well as the aspect ratio of CMEs as measured in situ.
146 - A. Bemporad , R. Susino , 2014
In this work UV and white light (WL) coronagraphic data are combined to derive the full set of plasma physical parameters along the front of a shock driven by a Coronal Mass Ejection. Pre-shock plasma density, shock compression ratio, speed and inclination angle are estimated from WL data, while pre-shock plasma temperature and outflow velocity are derived from UV data. The Rankine-Hugoniot (RH) equations for the general case of an oblique shock are then applied at three points along the front located between $2.2-2.6$ R$_odot$ at the shock nose and at the two flanks. Stronger field deflection (by $sim 46^circ$), plasma compression (factor $sim 2.7$) and heating (factor $sim 12$) occur at the nose, while heating at the flanks is more moderate (factor $1.5-3.0$). Starting from a pre-shock corona where protons and electrons have about the same temperature ($T_p sim T_e sim 1.5 cdot 10^6$ K), temperature increases derived with RH equations could better represent the protons heating (by dissipation across the shock), while the temperature increase implied by adiabatic compression (factor $sim 2$ at the nose, $sim 1.2-1.5$ at the flanks) could be more representative of electrons heating: the transit of the shock causes a decoupling between electron and proton temperatures. Derived magnetic field vector rotations imply a draping of field lines around the expanding flux rope. The shock turns out to be super-critical (sub-critical) at the nose (at the flanks), where derived post-shock plasma parameters can be very well approximated with those derived by assuming a parallel (perpendicular) shock.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا