Do you want to publish a course? Click here

SPH simulations of grain growth in protoplanetary disks

204   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims: In order to understand the first stages of planet formation, when tiny grains aggregate to form planetesimals, one needs to simultaneously model grain growth, vertical settling and radial migration of dust in protoplanetary disks. In this study, we implement an analytical prescription for grain growth into a 3D two-phase hydrodynamics code to understand its effects on the dust distribution in disks. Methods: Following the analytic derivation of Stepinski & Valageas (1997), which assumes that grains stick perfectly upon collision, we implement a convenient and fast method of following grain growth in our 3D, two-phase (gas+dust) SPH code. We then follow the evolution of the size and spatial distribution of a dust population in a classical T Tauri star disk. Results: We find that the grains go through various stages of growth due to the complex interplay between gas drag, dust dynamics, and growth. Grains initially grow rapidly as they settle to the mid-plane, then experience a fast radial migration with little growth through the bulk of the disk, and finally pile-up in the inner disk where they grow more efficiently. This results in a bimodal distribution of grain sizes. Using this simple prescription of grain growth, we find that grains reach decimetric sizes in 10^5 years in the inner disk and survive the fast migration phase.



rate research

Read More

123 - Guillaume Laibe 2007
We present the first results of the treatment of grain growth in our 3D, two-fluid (gas+dust) SPH code describing protoplanetary disks. We implement a scheme able to reproduce the variation of grain sizes caused by a variety of physical processes and test it with the analytical expression of grain growth given by Stepinski & Valageas (1997) in simulations of a typical T Tauri disk around a one solar mass star. The results are in agreement with a turbulent growing process and validate the method. We are now able to simulate the grain growth process in a protoplanetary disk given by a more realistic physical description, currently under development. We discuss the implications of the combined effect of grain growth and dust vertical settling and radial migration on subsequent planetesimal formation.
141 - Guillaume Laibe 2008
We present the first results of the treatment of grain growth in our 3D, two-fluid (gas+dust) SPH code describing protoplanetary disks. We implement a scheme able to reproduce the variation of grain sizes caused by a variety of physical processes and test it with the analytical expression of grain growth given by Stepinski & Valageas (1997) in simulations of a typical T Tauri disk around a one solar mass star. The results are in agreement with a turbulent growing process and validate the method. We are now able to simulate the grain growth process in a protoplanetary disk given by a more realistic physical description, currently under development. We discuss the implications of the combined effect of grain growth and dust vertical settling and radial migration on subsequent planetesimal formation.
Turbulence is the dominant source of collisional velocities for grains with a wide range of sizes in protoplanetary disks. So far, only Kolmogorov turbulence has been considered for calculating grain collisional velocities, despite the evidence that turbulence in protoplanetary disks may be non-Kolmogorov. In this work, we present calculations of grain collisional velocities for arbitrary turbulence models characterized by power-law spectra and determined by three dimensionless parameters: the slope of the kinetic energy spectrum, the slope of the auto-correlation time, and the Reynolds number. The implications of our results are illustrated by numerical simulations of the grain size evolution for different turbulence models. We find that for the modeled cases of the Iroshnikov-Kraichnan turbulence and the turbulence induced by the magneto-rotational instabilities, collisional velocities of small grains are much larger than those for the standard Kolmogorov turbulence. This leads to faster grain coagulation in the outer regions of protoplanetary disks, resulting in rapid increase of dust opacity in mm-wavelength and possibly promoting planet formation in very young disks.
Context. Observations at sub-millimeter and mm wavelengths will in the near future be able to resolve the radial dependence of the mm spectral slope in circumstellar disks with a resolution of around a few AU at the distance of the closest star-forming regions. Aims. We aim to constrain physical models of grain growth and fragmentation by a large sample of (sub-)mm observations of disks around pre-main sequence stars in the Taurus-Auriga and Ophiuchus star-forming regions. Methods. State-of-the-art coagulation/fragmentation and disk-structure codes are coupled to produce steady-state grain size distributions and to predict the spectral slopes at (sub-)mm wavelengths. Results. This work presents the first calculations predicting the mm spectral slope based on a physical model of grain growth. Our models can quite naturally reproduce the observed mm-slopes, but a simultaneous match to the observed range of flux levels can only be reached by a reduction of the dust mass by a factor of a few up to about 30 while keeping the gas mass of the disk the same. This dust reduction can either be due to radial drift at a reduced rate or during an earlier evolutionary time (otherwise the predicted fluxes would become too low) or due to efficient conversion of dust into larger, unseen bodies.
Turbulence in the protoplanetary disks induces collisions between dust grains, and thus facilitates grain growth. We investigate the two fundamental assumptions of the turbulence in obtaining grain collisional velocities -- the kinetic energy spectrum and the turbulence autocorrelation time -- in the context of the turbulence generated by the magneto-rotational instability (MRI). We carry out numerical simulations of the MRI as well as driven turbulence, for a range of physical and numerical parameters. We find that the convergence of the turbulence $alpha$-parameter does not necessarily imply the convergence of the energy spectrum. The MRI turbulence is largely solenoidal, for which we observe a persistent kinetic energy spectrum of $k^{-4/3}$. The same is obtained for solenoidal driven turbulence with and without magnetic field, over more than 1 dex near the dissipation scale. This power-law slope appears to be converged in terms of numerical resolution, and to be due to the bottleneck effect. The kinetic energy in the MRI turbulence peaks at the fastest growing mode of the MRI. In contrast, the magnetic energy peaks at the dissipation scale. The magnetic energy spectrum in the MRI turbulence does not show a clear power-law range, and is almost constant over approximately 1 dex near the dissipation scale. The turbulence autocorrelation time is nearly constant at large scales, limited by the shearing timescale, and shows a power-law drop close to $k^{-1}$ at small scales, with a slope steeper than that of the eddy crossing time. The deviation from the standard picture of the Kolmogorov turbulence with the injection scale at the disk scale height can potentially have a significant impact on the grain collisional velocities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا