Do you want to publish a course? Click here

Double bubbles in $S^3$ and $H^3$

291   0   0.0 ( 0 )
 Added by Neil Hoffman
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We prove the double bubble conjecture in the three-sphere $S^3$ and hyperbolic three-space $H^3$ in the cases where we can apply Hutchings theory: 1) in $S^3$, each enclosed volume and the complement occupy at least 10% of the volume of $S^3$; 2) in $H^3$, the smaller volume is at least 85% that of the larger. A balancing argument and asymptotic analysis reduce the problem in $S^3$ and $H^3$ to some computer checking. The computer analysis has been designed and fully implemented for both spaces.



rate research

Read More

290 - Tosiaki Kori 2017
We introduce three non-trivial 2-cocycles $c_k$, k=0,1,2, on the Lie algebra $S^3H=Map(S^3,H)$ with the aid of the corresponding basis vector fields on $S^3$, and extend them to 2-cocycles on the Lie algebra $S^3gl(n,H)=S^3H otimes gl(n,C)$. Then we have the corresponding central extension $S^3gl(n,H)oplus oplus_k (Ca_k)$. As a subalgebra of $S^3H$ we have the algebra $C[phi]$ of the Laurent polynomial spinors on $S^3$. Then we have a Lie subalgebra $hat{gl}(n, H)=C[phi] otimes gl(n, C)$ of $S^3gl(n,H)$, as well as its central extension by the 2-cocycles ${c_k}$ and the Euler vector field $d$: $hat{gl}=hat{gl}(n, H) oplus oplus_k(Ca_k)oplus Cd$ . The Lie algebra $hat{sl}(n,H)$ is defined as a Lie subalgebra of $hat{gl}(n,H)$ generated by $C[phi]otimes sl(n,C))$. We have the corresponding central extension of $hat{sl}(n,H)$ by the 2-cocycles ${c_k}$ and the derivation $d$, which becomes a Lie subalgebra $hat{sl}$ of $hat{gl}$. Let $h_0$ be a Cartan subalgebra of $sl(n,C)$ and $hat{h}=h_0 oplus oplus_k(Ca_k)oplus Cd$. The root space decomposition of the $ad(hat{h})$-representation of $hat{sl}$ is obtained. The set of roots is $Delta ={ m/2 delta + alpha ; alpha in Delta_0, m in Z} bigcup {m/2 delta ; m in Z }$ . And the root spaces are $hat{g}_{m/2 delta+ alpha}= C[phi ;m] otimes g_{alpha}$, for $alpha eq 0$ , $hat{g}_{m/2 delta}= C[phi ;m] otimes h_0$, for $m eq 0$, and $hat{g}_{0 delta}= hat{h}$, where $C[phi ;m]$ is the subspace with the homogeneous degree m. The Chevalley generators of $hat{sl}$ are given.
It is given a topological pinching for the injectivity radius of a compact embedded surface either in the sphere or in the hyperbolic space
The main result of this paper is a discrete Lawson correspondence between discrete CMC surfaces in R^3 and discrete minimal surfaces in S^3. This is a correspondence between two discrete isothermic surfaces. We show that this correspondence is an isometry in the following sense: it preserves the metric coefficients introduced previously by Bobenko and Suris for isothermic nets. Exactly as in the smooth case, this is a correspondence between nets with the same Lax matrices, and the immersion formulas also coincide with the smooth case.
130 - Fengbo Hang , Paul C. Yang 2015
We derive the first and second variation formula for the Greens function poles value of Paneitz operator on the standard three sphere. In particular it is shown that the first variation vanishes and the second variation is nonpositively definite. Moreover, the second variation vanishes only at the direction of conformal deformation. We also introduce a new invariant of the Paneitz operator and illustrate its close relation with the second eigenvalue and Sobolev inequality of Paneitz operator.
Let $M$ be a compact constant mean curvature surface either in $mathbb{S}^3$ or $mathbb{R}^3$. In this paper we prove that the stability index of $M$ is bounded below by a linear function of the genus. As a by product we obtain a comparison theorem between the spectrum of the Jacobi operator of $M$ and those of Hodge Laplacian of $1$-forms on $M$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا