Do you want to publish a course? Click here

Low-temperature lattice anomaly in LaFeAsO0.93F0.07 probed by x-ray absorption spectroscopy: Evidence for strong electron-lattice interaction

132   0   0.0 ( 0 )
 Added by Changjin Zhang
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The local lattice structure in newly discovered LaFeAsO1-xFx superconductors is studied by extended x-ray absorption fine structure measurements. An anomalous upturn of the mean-square relative displacement of the Fe-As bond is detected below ~70 K as electron carriers are introduced,reflecting the occurrence of Fe-As bond local lattice fluctuation. Similar to that in cuprates, this lattice fluctuation exhibits an abrupt depression at the onset superconducting transition temperature. The results indicate that strong electron-lattice interaction is involved in the superconducting transition in oxypcnictide superconductors, putting a strict limitation on possible theoretical models.



rate research

Read More

150 - L. Zhang , P. F. Guan , D. L. Feng 2010
The interplay between spin dynamics and lattice vibration has been suggested as an important part of the puzzle of high-temperature superconductivity. Here we report the strong interaction between spin fluctuation and phonon in SmFeAsO, a parent compound of the iron arsenide family of superconductors, revealed by low-temperature Raman spectroscopy. Anomalous zone-boundary-phonon Raman scattering from spin superstructure was observed at temperatures below the antiferromagnetic ordering point, which offers compelling evidence on spin dependent electron-phonon coupling in pnictides.
We have measured the intricate temperature dependence of the Co L2,3 x-ray absorption spectra (2p-3d excitations) of CoO. To allow for accurate total electron yield measurements, the material has been grown in thin film form on a metallic substrate in order to avoid charging problems usually encountered during electron spectroscopic studies on bulk CoO samples. The changes in spectra due to temperature are in good agreement with detailed ligand-field calculations indicating that these changes are mostly due to thermal population of closely lying excited states, originating from degenerate t2g levels lifted by the spin-orbit coupling. Magnetic coupling in the ordered phase, modeled as a mean-field exchange field, mixes in excited states inducing a tetragonal charge density. The spin-orbit coupling induced splitting of the low energy states results in a non-trivial temperature dependence for the magnetic susceptibility.
The strength of the electron-phonon coupling parameter and its evolution throughout a solids phase diagram often determines phenomena such as superconductivity, charge- and spin-density waves. Its experimental determination relies on the ability to distinguish thermally activated phonons from those emitted by conduction band electrons, which can be achieved in an elegant way by ultrafast techniques. Separating the electronic from the out-of-equilibrium lattice subsystems, we probed their re-equilibration by monitoring the transient lattice temperature through femtosecond X-ray diffraction in La$_{2-x}$Sr$_x$CuO$_4$ single crystals with $x$=0.1 and 0.21. The temperature dependence of the electron-phonon coupling is obtained experimentally and shows similar trends to what is expected from the textit{ab-initio} calculated shape of the electronic density-of-states near the Fermi energy. This study evidences the important role of band effects in the electron-lattice interaction in solids, in particular in superconductors.
112 - M. Merz , F. Eilers , Th. Wolf 2012
The substitutional dependence of valence and spin-state configurations of Sr(Fe$_{1-x}$Co$_x$)$_2$As$_2$ ($x =$ 0, 0.05, 0.11, 0.17, and 0.38) is investigated with near-edge x-ray absorption fine structure at the $L_{2,3}$ edges of Fe, Co, and As. The present data provide direct spectroscopic evidence for an effectively isovalent substitution of Fe$^{2+}$ by Co$^{2+}$, which is in contrast to the widely assumed Co-induced electron-doping effect. Moreover, the data reveal that not only does the Fe valency remain completely unaffected across the entire doping range, but so do the Co and As valencies as well. The data underline a prominent role of the hybridization between (Fe,Co) 3$d_{xy}$, $d_{xz}$, $d_{yz}$ orbitals and As $4s/4p$ states for the band structure in $A$(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and suggest that the covalency of the (Fe,Co)-As bond is a key parameter for the interplay between magnetism and superconductivity.
Tailoring the properties of correlated oxides is accomplished by chemical doping, pressure, temperature or magnetic field. Photoexcitation is a valid alternative to reach out-of-equilibrium states otherwise inaccessible. Here, we quantitatively estimate the coupling between a lattice distortion and the charge-transfer excitation in (La$_2$CuO$_{4+delta}$). We photoinduce a coherent La ion vibration and monitor the response of the optical constants in a broad energy range, providing quantitative information on the electron-phonon matrix element that can be compared to theoretical models. We propose the same methodology to probe electron-electron interactions in other materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا