Do you want to publish a course? Click here

Kinematic properties of early-type galaxy haloes using planetary nebulae

133   0   0.0 ( 0 )
 Added by Lodovico Coccato
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new planetary nebulae (PNe) positions, radial velocities, and magnitudes for 6 early-type galaxies obtained with the Planetary Nebulae Spectrograph, their two-dimensional velocity and velocity dispersion fields. We extend this study to include an additional 10 early-type galaxies with PNe radial velocity measurements available from the literature, to obtain a broader description of the outer-halo kinematics in early-type galaxies. These data extend the information derived from stellar kinematics to typically up to ~8 Re. The combination of photometry, stellar and PNe kinematics shows: i) good agreement between the PNe number density and the stellar surface brightness in the region where the two data sets overlap; ii) good agreement between PNe and stellar kinematics; iii) that the mean rms velocity profiles fall into two groups: with of the galaxies characterized by slowly decreasing profiles and the remainder having steeply falling profiles; iv) a larger variety of velocity dispersion profiles; v) that twists and misalignments in the velocity fields are more frequent at large radii, including some fast rotators; vi) that outer haloes are characterised by more complex radial profiles of the specific angular momentum-related lambda_R parameter than observed within 1Re; vii) that many objects are more rotationally dominated at large radii than in their central parts; and viii) that the halo kinematics are correlated with other galaxy properties, such as total luminosity, isophotal shape, total stellar mass, V/sigma, and alpha parameter, with a clear separation between fast and slow rotators.



rate research

Read More

We present first results of a study of the halo kinematics for a sample of early type galaxies using planetary nebulae (PNe) as kinematical tracers. PNe allow to extend up to several effective radii (Re) the information from absorption line kinematics (confined to within 1 or 2 Re), providing valuable information and constraints for merger simulations and galaxy formation models. We find that the specific angular momentum per unit mass has a more complex radial dependence when the halo region is taken into account and that the halo velocity dispersion is related to the total galaxy luminosity, isophotal shape, and number of PNe per unit of luminosity
80 - A. Danehkar 2021
The majority of planetary nebulae (PNe) show axisymmetric morphologies, whose causes are not well understood. In this work, we present spatially resolved kinematic observations of 14 Galactic PNe surrounding Wolf-Rayet ([WR]) and weak emission-line stars ($wels$) based on the H$alpha$ and [N II] emission taken with the Wide Field Spectrograph on the ANU 2.3-m telescope. Velocity-resolved channel maps and position--velocity diagrams, together with archival Hubble Space Telescope ($HST$) and ground-based images, are employed to construct three-dimensional morpho-kinematic models of 12 objects using the program SHAPE. Our results indicate that these 12 PNe have elliptical morphologies with either open or closed outer ends. Kinematic maps also illustrate on-sky orientations of elliptically symmetric morphologies of the interior shells in NGC 6578 and NGC 6629, and the compact ($leq 6$ arcsec) PNe Pe1-1, M3-15, M1-25, Hen2-142, and NGC 6567, in agreement with the high-resolution $HST$ images containing morphological details. Point-symmetric knots in Hb4 exhibit deceleration with distance from the nebular center that could be due to shock collisions with the ambient medium. Velocity dispersion maps of Pe1-1 disclose point-symmetric knots similar to those in Hb4. Collimated outflows are also visible in the position--velocity diagrams of M3-30, M1-32, M3-15, and K2-16, which are reconstructed by tenuous prolate ellipsoids extending upwardly from thick toroidal shells in our models.
193 - Lodovico Coccato 2016
The kinematic and dynamical properties of galaxy stellar halos are difficult to measure because of the faint surface brightness that characterizes these regions. Spiral galaxies can be probed using the radio HI emission; on the contrary, early-type galaxies contain less gas, therefore alternative kinematic tracers need to be used. Planetary nebulae (PNe) can be easily detected far out in the halo thanks to their bright emission lines. It is therefore possible to map the halo kinematics also in early-type galaxies, typically out to 5 effective radii or beyond. Thanks to the recent spectroscopic surveys targeting extra-galactic PNe, we can now rely on a few tens of galaxies where the kinematics of the stellar halos are measured. Here, I will review the main results obtained in this field in the last decades.
We present a catalogue of positions, magnitudes and velocities for 3300 emission-line objects found by the Planetary Nebula Spectrograph in a survey of the Andromeda Galaxy, M31. Of these objects, 2615 are found likely to be planetary nebulae (PNe) associated with M31. Initial results from this survey include: the likely non-existence of Andromeda VIII; a universal PN luminosity function, with the exception of a small amount of obscuration, and a small offset in normalization between bulge and disk components; very faint kinematically-selected photometry implying no cut-off in the disk to beyond 4 scalelengths and no halo population in excess of the bulge out to 10 effective bulge radii; disk kinematics that show significant dispersion and asymmetric drift out to large radii, consistent with a warm flaring disk; and no sign of any variation in kinematics with PN luminosity, suggesting that PNe arise from a fairly uniform population of old stars.
93 - A. Y. Yang , W. W. Tian , H. Zhu 2016
We construct HI~absorption spectra for 18 planetary nebulae (PNe) and their background sources using the data from the International Galactic Plane Survey. We estimate the kinematic distances of these PNe, among which 15 objects kinematic distances are obtained for the first time. The distance uncertainties of 13 PNe range from 10% to 50%, which is a significant improvement with uncertainties of a factor two or three smaller than most of previous distance measurements. We confirm that PN G030.2-00.1 is not a PN because of its large distance found here.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا