Do you want to publish a course? Click here

Probing the kinematics of early-type galaxy halos using planetary nebulae

118   0   0.0 ( 0 )
 Added by Lodovico Coccato
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present first results of a study of the halo kinematics for a sample of early type galaxies using planetary nebulae (PNe) as kinematical tracers. PNe allow to extend up to several effective radii (Re) the information from absorption line kinematics (confined to within 1 or 2 Re), providing valuable information and constraints for merger simulations and galaxy formation models. We find that the specific angular momentum per unit mass has a more complex radial dependence when the halo region is taken into account and that the halo velocity dispersion is related to the total galaxy luminosity, isophotal shape, and number of PNe per unit of luminosity



rate research

Read More

We present new planetary nebulae (PNe) positions, radial velocities, and magnitudes for 6 early-type galaxies obtained with the Planetary Nebulae Spectrograph, their two-dimensional velocity and velocity dispersion fields. We extend this study to include an additional 10 early-type galaxies with PNe radial velocity measurements available from the literature, to obtain a broader description of the outer-halo kinematics in early-type galaxies. These data extend the information derived from stellar kinematics to typically up to ~8 Re. The combination of photometry, stellar and PNe kinematics shows: i) good agreement between the PNe number density and the stellar surface brightness in the region where the two data sets overlap; ii) good agreement between PNe and stellar kinematics; iii) that the mean rms velocity profiles fall into two groups: with of the galaxies characterized by slowly decreasing profiles and the remainder having steeply falling profiles; iv) a larger variety of velocity dispersion profiles; v) that twists and misalignments in the velocity fields are more frequent at large radii, including some fast rotators; vi) that outer haloes are characterised by more complex radial profiles of the specific angular momentum-related lambda_R parameter than observed within 1Re; vii) that many objects are more rotationally dominated at large radii than in their central parts; and viii) that the halo kinematics are correlated with other galaxy properties, such as total luminosity, isophotal shape, total stellar mass, V/sigma, and alpha parameter, with a clear separation between fast and slow rotators.
193 - Lodovico Coccato 2016
The kinematic and dynamical properties of galaxy stellar halos are difficult to measure because of the faint surface brightness that characterizes these regions. Spiral galaxies can be probed using the radio HI emission; on the contrary, early-type galaxies contain less gas, therefore alternative kinematic tracers need to be used. Planetary nebulae (PNe) can be easily detected far out in the halo thanks to their bright emission lines. It is therefore possible to map the halo kinematics also in early-type galaxies, typically out to 5 effective radii or beyond. Thanks to the recent spectroscopic surveys targeting extra-galactic PNe, we can now rely on a few tens of galaxies where the kinematics of the stellar halos are measured. Here, I will review the main results obtained in this field in the last decades.
Planetary nebulae are now well established as probes of galaxy dynamics and as standard candles in distance determinations. Motivated by the need to improve the efficiency of planetary nebulae searches and the speed with which their radial velocities are determined, a dedicated instrument - the Planetary Nebulae Spectrograph or PN.S - has been designed and commissioned at the 4.2m William Herschel Telescope. The high optical efficiency of the spectrograph results in the detection of typically ~ 150 PN in galaxies at the distance of the Virgo cluster in one night of observations. In the same observation the radial velocities are obtained with an accuracy of ~ 20 km/s
In this contribution we report on a kinematic study for 33 early type galaxies (ETGs) into their outer halos (average 6 effective radii, Re). We use planetary nebulae (PNe) as tracers of the main stellar population at large radii, where absorption line spectroscopy is no longer feasible. The ePN.S survey is the largest survey to-date of ETG kinematics with PNe, based on data from the Planetary Nebula Spectrograph (PN.S), counter-dispersed imaging, and high-resolution PN spectroscopy. We find that ETGs typically show a kinematic transition between inner regions and halos. Slow rotators have increased rotational support at large radii. Most of the ePN.S fast rotators show a decrease in rotation, due to the fading of the stellar disk in the outer, more slowly rotating spheroid. 30% of these fast rotators are dominated by rotation also at large radii, 40% show kinematic twists or misalignments, indicating a transition from oblate to triaxial in the halo. Despite this variety of kinematic behaviors, the ePN.S ETG halos have similar angular momentum content, independently of fast/slow rotation of the central regions. Estimated kinematic transition radii in units of Re are ~1-3 Re and anti-correlate with stellar mass. These results are consistent with cosmological simulations and support a two-phase formation scenario for ETGs.
311 - N.R. Napolitano 2007
We examine the dark matter properties of nearby early-type galaxies using planetary nebulae (PNe) as mass probes. We have designed a specialised instrument, the Planetary Nebula Spectrograph (PN.S) operating at the William Herschel telescope, with the purpose of measuring PN velocities with best efficiency. The primary scientific objective of this custom-built instrument is the study of the PN kinematics in 12 ordinary round galaxies. Preliminary results showing a dearth of dark matter in ordinary galaxies (Romanowsky et al. 2003) are now confirmed by the first complete PN.S datasets. On the other hand early-type galaxies with a regular dark matter content are starting to be observed among the brighter PN.S target sample, thus confirming a correlation between the global dark-to-luminous mass virial ratio (f_DM=M_DM/M_star) and the galaxy luminosity and mass.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا