No Arabic abstract
We consider the nonlinear Schrodinger equation, with mass-critical nonlinearity, focusing or defocusing. For any given angle, we establish the existence of infinitely many functions on which the scattering operator acts as a rotation of this angle. Using a lens transform, we reduce the problem to the existence of a solution to a nonlinear Schrodinger equation with harmonic potential, satisfying suitable periodicity properties. The existence of infinitely many such solutions is proved thanks to a constrained minimization problem.
We prove asymptotic completeness in the energy space for the nonlinear Schrodinger equation posed on hyperbolic space in the radial case, in space dimension at least 4, and for any energy-subcritical, defocusing, power nonlinearity. The proof is based on simple Morawetz estimates and weighted Strichartz estimates. We investigate the same question on spaces which kind of interpolate between Euclidean space and hyperbolic space, showing that the family of short range nonlinearities becomes larger and larger as the space approaches the hyperbolic space. Finally, we describe the large time behavior of radial solutions to the free dynamics.
We present a general algorithm to show that a scattering operator associated to a semilinear dispersive equation is real analytic, and to compute the coefficients of its Taylor series at any point. We illustrate this method in the case of the Schrodinger equation with power-like nonlinearity or with Hartree type nonlinearity, and in the case of the wave and Klein-Gordon equations with power nonlinearity. Finally, we discuss the link of this approach with inverse scattering, and with complete integrability.
We are concerned with the global behavior of the solutions of the focusing mass supercritical nonlinear Schr{o}dinger equation under partial harmonic confinement. We establish a necessary and sufficient condition on the initial data below the ground states to determine the global behavior (blow-up/scattering) of the solution. Our proof of scattering is based on the varia-tional characterization of the ground states, localized virial estimates, linear profile decomposition and nonlinear profiles.
We consider dispersion generalized nonlinear Schrodinger equations (NLS) of the form $i partial_t u = P(D) u - |u|^{2 sigma} u$, where $P(D)$ denotes a (pseudo)-differential operator of arbitrary order. As a main result, we prove symmetry results for traveling solitary waves in the case of powers $sigma in mathbb{N}$. The arguments are based on Steiner type rearrangements in Fourier space. Our results apply to a broad class of NLS-type equations such as fourth-order (biharmonic) NLS, fractional NLS, square-root Klein-Gordon and half-wave equations.
We consider discrete analogues of two well-known open problems regarding invariant measures for dispersive PDE, namely, the invariance of the Gibbs measure for the continuum (classical) Heisenberg model and the invariance of white noise under focusing cubic NLS. These continuum models are completely integrable and connected by the Hasimoto transform; correspondingly, we focus our attention on discretizations that are also completely integrable and also connected by a discrete Hasimoto transform. We consider these models on the infinite lattice $mathbb Z$. Concretely, for a completely integrable variant of the classical Heisenberg spin chain model (introduced independently by Haldane, Ishimori, and Sklyanin) we prove the existence and uniqueness of solutions for initial data following a Gibbs law (which we show is unique) and show that the Gibbs measure is preserved under these dynamics. In the setting of the focusing Ablowitz--Ladik system, we prove invariance of a measure that we will show is the appropriate discrete analogue of white noise. We also include a thorough discussion of the Poisson geometry associated to the discrete Hasimoto transform introduced by Ishimori that connects the two models studied in this article.