Do you want to publish a course? Click here

Renormalization flows in complex networks

201   0   0.0 ( 0 )
 Added by Filippo Radicchi
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Complex networks have acquired a great popularity in recent years, since the graph representation of many natural, social and technological systems is often very helpful to characterize and model their phenomenology. Additionally, the mathematical tools of statistical physics have proven to be particularly suitable for studying and understanding complex networks. Nevertheless, an important obstacle to this theoretical approach is still represented by the difficulties to draw parallelisms between network science and more traditional aspects of statistical physics. In this paper, we explore the relation between complex networks and a well known topic of statistical physics: renormalization. A general method to analyze renormalization flows of complex networks is introduced. The method can be applied to study any suitable renormalization transformation. Finite-size scaling can be performed on computer-generated networks in order to classify them in universality classes. We also present applications of the method on real networks.



rate research

Read More

In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.
The availability of data from many different sources and fields of science has made it possible to map out an increasing number of networks of contacts and interactions. However, quantifying how reliable these data are remains an open problem. From Biology to Sociology and Economy, the identification of false and missing positives has become a problem that calls for a solution. In this work we extend one of newest, best performing models -due to Guimera and Sales-Pardo in 2009- to directed networks. The new methodology is able to identify missing and spurious directed interactions, which renders it particularly useful to analyze data reliability in systems like trophic webs, gene regulatory networks, communication patterns and social systems. We also show, using real-world networks, how the method can be employed to help searching for new interactions in an efficient way.
Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone can not be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states towards synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely brain networks, for which the emergence of explosive synchronization has been observed.
We propose a bare-bones stochastic model that takes into account both the geographical distribution of people within a country and their complex network of connections. The model, which is designed to give rise to a scale-free network of social connections and to visually resemble the geographical spread seen in satellite pictures of the Earth at night, gives rise to a power-law distribution for the ranking of cities by population size (but for the largest cities) and reflects the notion that highly connected individuals tend to live in highly populated areas. It also yields some interesting insights regarding Gibrats law for the rates of city growth (by population size), in partial support of the findings in a recent analysis of real data [Rozenfeld et al., Proc. Natl. Acad. Sci. U.S.A. 105, 18702 (2008)]. The model produces a nontrivial relation between city population and city population density and a superlinear relationship between social connectivity and city population, both of which seem quite in line with real data.
Power grids, road maps, and river streams are examples of infrastructural networks which are highly vulnerable to external perturbations. An abrupt local change of load (voltage, traffic density, or water level) might propagate in a cascading way and affect a significant fraction of the network. Almost discontinuous perturbations can be modeled by shock waves which can eventually interfere constructively and endanger the normal functionality of the infrastructure. We study their dynamics by solving the Burgers equation under random perturbations on several real and artificial directed graphs. Even for graphs with a narrow distribution of node properties (e.g., degree or betweenness), a steady state is reached exhibiting a heterogeneous load distribution, having a difference of one order of magnitude between the highest and average loads. Unexpectedly we find for the European power grid and for finite Watts-Strogatz networks a broad pronounced bimodal distribution for the loads. To identify the most vulnerable nodes, we introduce the concept of node-basin size, a purely topological property which we show to be strongly correlated to the average load of a node.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا