Do you want to publish a course? Click here

Superconducting Properties of adipic acid doped Bulk MgB2 Superconductor

245   0   0.0 ( 0 )
 Added by Veer Awana Dr
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the effect of adipic acid (C6H10O4) doping on lattice parameters, microstructure, critical temperature (Tc), current density (Jc), and irreversibility field (Hirr) for MgB2 superconductor. Actual carbon (C) substitution level for boron (B) is estimated to be from 0.40 percent to 2.95 percent for different doping levels. A reduction in Tc from 38.43 to 34.93 K and in lattice parameter a from 3.084(3) A to 3.075(6) Ais observed for the10 wt percent C6H10O4 doped sample in comparison to pristine MgB2. This is an indication of C substitution at boron sites, with the C coming from the decomposition of C6H10O4 at the time of reaction. Interestingly the doped samples have resulted in significant enhancement of Jc and Hirr. All the doped samples exhibit the Jc value of the order of 10^4 A/cm2 at 5 K and 8 T, which is higher by an order of magnitude as compared to undoped sample. This result indicates that C6H10O4 is a promising material for MgB2 for obtaining the excellent Jc values under higher magnetic fields.



rate research

Read More

Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging (MRI). The recent global helium shortage has quickened research into high-temperature superconductors (HTSs) materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB2) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB2 permanent bulk magnet was detrmined. Because MgB2 is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB2 bulks promising for the next generation of Tesla-class permanent-magnet applications.
This review paper illustrates the main normal and superconducting state properties of magnesium diboride, a material known since early 1950s, but recently discovered to be superconductive at a remarkably high critical temperature Tc=40K for a binary compound. What makes MgB2 so special? Its high Tc, simple crystal structure, large coherence lengths, high critical current densities and fields, transparency of grain boundaries to current promises that MgB2 will be a good material for both large scale applications and electronic devices. During the last seven month, MgB2 has been fabricated in various forms, bulk, single crystals, thin films, tapes and wires. The largest critical current densities >10MA/cm2 and critical fields 40T are achieved for thin films. The anisotropy ratio inferred from upper critical field measurements is still to be resolved, a wide range of values being reported, between 1.2 and 9. Also there is no consensus about the existence of a single anisotropic or double energy gap. One central issue is whether or not MgB2 represents a new class of superconductors, being the tip of an iceberg who awaits to be discovered. Up to date MgB2 holds the record of the highest Tc in its class. However, the discovery of superconductivity in MgB2 revived the interest in non-oxides and initiated a search for superconductivity in related materials, several compounds being already announced to become superconductive: TaB2, BeB2.75, C-S composites, and the elemental B under pressure.
We study the effect of synthesis temperature on the phase formation in nano(n)-SiC added bulk MgB2 superconductor. In particular we study: lattice parameters, amount of carbon (C) substitution, microstructure, critical temperature (Tc), irreversibility field (Hirr), critical current density (Jc), upper critical field (Hc2) and flux pinning. Samples of MgB2+(n-SiC)x with x=0.0, 0.05 & 0.10 were prepared at four different synthesis temperatures i.e. 850, 800, 750, and 700oC with the same heating rate as 10oC/min. We found 750oC as the optimal synthesis temperature for n-SiC doping in bulk MgB2 in order to get the best superconducting performance in terms of Jc, Hc2 and Hirr. Carbon (C) substitution enhances the Hc2 while the low temperature synthesis is responsible for the improvement in Jc due to the smaller grain size, defects and nano-inclusion induced by C incorporation into MgB2 matrix, which is corroborated by elaborative HRTEM (high-resolution transmission electron microscopy) results. We optimized the the Tc(R=0) of above 15K for the studied n-SiC doped and 750 0C synthesized MgB2 under 140 KOe field, which is one of the highest values yet obtained for variously processed and nano-particle added MgB2 in literature to our knowledge.
We have developed disk-shaped MgB2 bulk superconducting magnets (20, 30 mm in diameter, 10 mm in thickness) using the in-situ process from Mg and B powders and evaluated the temperature dependence of trapped magnetic field. A pair of two disc-shaped bulks of 30 mm in diameter and 10 mm in thickness magnetized by field-cooling condition showed trapped fields of 1.2, 2.8 and 3.1 T at 30, 20 and 17.5 K, respectively. High trapped field over 3 T was recorded for the first time.
MoSi2 doped MgB2 tapes with different doping levels were prepared through the in-situ powder-in-tube method using Fe as the sheath material. Effect of MoSi2 doping on the MgB2/Fe tapes was investigated. It is found that the highest JC value was achieved in the 2.5 at.% doped samples, more than a factor of 4 higher compared to the undoped tapes at 4.2 K, 10 T, then further increasing the doping ratio caused a reduction of JC. Moreover, all doped tapes exhibited improved magnetic field dependence of Jc. The enhancement of JC-B properties in MoSi2 doped MgB2 tapes is attributed to good grain linkage and the introduction of effective flux pining centers with the doping.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا