Do you want to publish a course? Click here

Reconstructing quasimorphisms from associated partial orders and a question of Polterovich

210   0   0.0 ( 0 )
 Added by Tobias Hartnick
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We show that every continuous homogeneous quasimorphism on a finite-dimensional 1-connected simple Lie group arises as the relative growth of any continuous bi-invariant partial order on that group. More generally we show, that an arbitrary homogeneous quasimorphism can be reconstructed as the relative growth of a partial order subject to a certain sandwich condition. This provides a link between invariant orders and bounded cohomology and allows the concrete computation of relative growth for finite dimensional simple Lie groups as well as certain infinite-dimensional Lie groups arising from symplectic geometry.



rate research

Read More

We prove the vanishing of the cup product of the bounded cohomology classes associated to any two Brooks quasimorphisms on the free group. This is a consequence of the vanishing of the square of a universal class for tree automorphism groups.
We study the construction of quasimorphisms on groups acting on trees introduced by Monod and Shalom, that we call median quasimorphisms, and in particular we fully characterise actions on trees that give rise to non-trivial median quasimorphisms. Roughly speaking, either the action is highly transitive on geodesics, it fixes a point in the boundary, or there exists an infinite family of non-trivial median quasimorphisms. In particular, in the last case the second bounded cohomology of the group is infinite dimensional as a vector space. As an application, we show that a cocompact lattice in a product of trees only has trivial quasimorphisms if and only if both closures of the projections on the two factors are locally $infty$-transitive.
We define toric partial orders, corresponding to regions of graphic toric hyperplane arrangements, just as ordinary partial orders correspond to regions of graphic hyperplane arrangements. Combinatorially, toric posets correspond to finite posets under the equivalence relation generated by converting minimal elements into maximal elements, or sources into sinks. We derive toric analogues for several features of ordinary partial orders, such as chains, antichains, transitivity, Hasse diagrams, linear extensions, and total orders.
Let $F_n$ be a free group of finite rank $n geq 2$. We prove that if $H$ is a subgroup of $F_n$ with $textrm{rk}(H)=2$ and $R$ is a retract of $F_n$, then $H cap R$ is a retract of $H$. However, for every $m geq 3$ and every $1 leq k leq n-1$, there exist a subgroup $H$ of $F_n$ of rank $m$ and a retract $R$ of $F_n$ of rank $k$ such that $H cap R$ is not a retract of $H$. This gives a complete answer to a question of Bergman. Furthermore, we provide positive evidence for the inertia conjecture of Dicks and Ventura. More precisely, we prove that $textrm{rk}(H cap textrm{Fix}(S)) leq textrm{rk}(H)$ for every family $S$ of endomorphisms of $F_n$ and every subgroup $H$ of $F_n$ with $textrm{rk}(H) leq 3$.
The deck of a graph $G$ is the multiset of cards ${G-v:vin V(G)}$. Myrvold (1992) showed that the degree sequence of a graph on $ngeq7$ vertices can be reconstructed from any deck missing one card. We prove that the degree sequence of a graph with average degree $d$ can reconstructed from any deck missing $O(n/d^3)$ cards. In particular, in the case of graphs that can be embedded on a fixed surface (e.g. planar graphs), the degree sequence can be reconstructed even when a linear number of the cards are missing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا