Do you want to publish a course? Click here

Spitzer Observations of L429: A Near-collapse or Collapsing Starless Core

546   0   0.0 ( 0 )
 Added by Ameila Stutz
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Spitzer infrared observations of the starless core L429. The IR images of this core show an absorption feature, caused by the dense core material, at wavelengths <= 70 micron. The core has a steep density profile, and reaches A_V > 35 mag near the center. We show that L429 is either collapsing or in a near-collapse state.



rate research

Read More

We observed the pre-stellar core L1521F in dust emission at 1.2mm and in two transitions each of N2H+, N2D+, C18O, and C17O in order to increase the sample of well studied centrally concentrated and chemically evolved starless cores, likely on the verge of star formation, and to determine the initial conditions for low--mass star formation in the Taurus Molecular Cloud. We derived in this object a molecular hydrogen number density n(H2) ~ 10^6 cm-3 and a CO depletion factor, integrated along the line of sight, fD ~ 15 in the central 20, similar to the pre-stellar core L1544. However, the N(N2D+)/N(N2H+) column density ratio is ~0.1, a factor of about 2 lower than that found in L1544. The observed relation between the deuterium fractionation and the integrated CO depletion factor across the core can be reproduced by chemical models if N2H+ is slightly (factor of ~2 in fractional abundance) depleted in the central 3000 AU. The N2H+ and N2D+ linewidths in the core center are ~0.3 km/s, significantly larger than in other more quiescent Taurus starless cores but similar to those observed in the center of L1544. The kinematical behaviour of L1521F is more complex than seen in L1544, and a model of contraction due to ambipolar diffusion is only marginally consistent with the present data. Other velocity fields, perhaps produced by unresolved substructure, are present. Both chemical and kinematical analyses suggest that L1521F is less evolved than L1544, but, in analogy with L1544, it is approaching the ``critical state.
Compact substructure is expected to arise in a starless core as mass becomes concentrated in the central region likely to form a protostar. Additionally, multiple peaks may form if fragmentation occurs. We present ALMA Cycle 2 observations of 60 starless and protostellar cores in the Ophiuchus molecular cloud. We detect eight compact substructures which are >15 arcsec from the nearest Spitzer YSO. Only one of these has strong evidence for being truly starless after considering ancillary data, e.g., from Herschel and X-ray telescopes. An additional extended emission structure has tentative evidence for starlessness. The number of our detections is consistent with estimates from a combination of synthetic observations of numerical simulations and analytical arguments. This result suggests that a similar ALMA study in the Chamaeleon I cloud, which detected no compact substructure in starless cores, may be due to the peculiar evolutionary state of cores in that cloud.
We present Spitzer observations of a sample of 12 starless cores selected to have prominent 24 micron shadows. The Spitzer images show 8 and 24 micron shadows and in some cases 70 micron shadows; these spatially resolved absorption features trace the densest regions of the cores. We have carried out a 12CO (2-1) and 13CO (2-1) mapping survey of these cores with the Heinrich Hertz Telescope (HHT). We use the shadow features to derive optical depth maps. We derive molecular masses for the cores and the surrounding environment; we find that the 24 micron shadow masses are always greater than or equal to the molecular masses derived in the same region, a discrepancy likely caused by CO freeze--out onto dust grains. We combine this sample with two additional cores that we studied previously to bring the total sample to 14 cores. Using a simple Jeans mass criterion we find that ~ 2/3 of the cores selected to have prominent 24 micron shadows are collapsing or near collapse, a result that is supported by millimeter line observations. Of this subset at least half have indications of 70 micron shadows. All cores observed to produce absorption features at 70 micron are close to collapse. We conclude that 24 micron shadows, and even more so the 70 micron ones, are useful markers of cloud cores that are approaching collapse.
We present observations of L1014, a dense core in the Cygnus region previously thought to be starless, but data from the Spitzer Space Telescope shows the presence of an embedded source. We propose a model for this source that includes a cold core, heated by the interstellar radiation field, and a low-luminosity internal source. The low luminosity of the internal source suggests a substellar object. If L1014 is representative, other starless cores may turn out to harbor central sources.
130 - E.T. Young 2006
We analyze {it Spitzer} and Magellan observations of a star forming core near IRS-2 in the young cluster NGC 2264. The submillimeter source IRAS 12 S1, previously believed to be an intermediate mass Class 0 object is shown to be a dense collection of embedded, low mass stars. We argue that this group of stars represents the fragmenting collapse of a dense, turbulent core, based on a number of indicators of extreme youth. With reasonable estimates for the velocity dispersion in the group, we estimate a dynamical lifetime of only a few x 10$^{4}$ years. Spectral energy distributions of stars in the core are consistent with Class I or Class 0 assignments. We present observations of an extensive system of molecular hydrogen emission knots. The luminosity of the objects in the core region are consistent with roughly solar mass protostars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا