Do you want to publish a course? Click here

Spitzer and HHT observations of starless cores: masses and environments

296   0   0.0 ( 0 )
 Added by Ameila Stutz
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Spitzer observations of a sample of 12 starless cores selected to have prominent 24 micron shadows. The Spitzer images show 8 and 24 micron shadows and in some cases 70 micron shadows; these spatially resolved absorption features trace the densest regions of the cores. We have carried out a 12CO (2-1) and 13CO (2-1) mapping survey of these cores with the Heinrich Hertz Telescope (HHT). We use the shadow features to derive optical depth maps. We derive molecular masses for the cores and the surrounding environment; we find that the 24 micron shadow masses are always greater than or equal to the molecular masses derived in the same region, a discrepancy likely caused by CO freeze--out onto dust grains. We combine this sample with two additional cores that we studied previously to bring the total sample to 14 cores. Using a simple Jeans mass criterion we find that ~ 2/3 of the cores selected to have prominent 24 micron shadows are collapsing or near collapse, a result that is supported by millimeter line observations. Of this subset at least half have indications of 70 micron shadows. All cores observed to produce absorption features at 70 micron are close to collapse. We conclude that 24 micron shadows, and even more so the 70 micron ones, are useful markers of cloud cores that are approaching collapse.



rate research

Read More

Young massive stars are usually found embedded in dense and massive molecular clumps and are known for being highly obscured and distant. During their formation process, deuteration is regarded as a potentially good indicator of the formation stage. Therefore, proper observations of such deuterated molecules are crucial, but still, hard to perform. In this work, we test the observability of the transition o-H$_2$D$^+(1_{10}$-$1_{11})$, using a synthetic source, to understand how the physical characteristics are reflected in observations through interferometers and single-dish telescopes. In order to perform such tests, we post-processed a magneto-hydrodynamic simulation of a collapsing magnetized core using the radiative transfer code POLARIS. Using the resulting intensity distributions as input, we performed single-dish (APEX) and interferometric (ALMA) synthetic observations at different evolutionary times, always mimicking realistic configurations. Finally, column densities were derived to compare our simulations with real observations previously performed. Our derivations for o-H$_2$D$^+$ are in agreement with values reported in the literature, in the range of 10$^{!10-11}$cm$^{!-2}$ and 10$^{!12-13}$cm$^{!-2}$ for single-dish and interferometric measurements, respectively.
We have carried out observations of CCH and its two $^{13}$C isotopologues, $^{13}$CCH and C$^{13}$CH, in the 84 - 88 GHz band toward two starless cores, L1521B and L134N (L183), using the Nobeyama 45 m radio telescope. We have detected C$^{13}$CH with a signal-to-noise (S/N) ratio of 4, whereas no line of $^{13}$CCH was detected in either the dark clouds. The column densities of the normal species were derived to be ($1.66 pm 0.18$)$times 10^{14}$ cm$^{-2}$ and ($7.3 pm 0.9$)$times 10^{13}$ cm$^{-2}$ ($1 sigma$) in L1521B and L134N, respectively. The column density ratios of $N$(C$^{13}$CH)/$N$($^{13}$CCH) were calculated to be $>1.1$ and $>1.4$ in L1521B and L134N, respectively. The characteristic that $^{13}$CCH is less abundant than C$^{13}$CH is likely common for dark clouds. Moreover, we find that the $^{12}$C/$^{13}$C ratios of CCH are much higher than those of HC$_{3}$N in L1521B by more than a factor of 2, as well as in Taurus Molecular Cloud-1 (TMC-1). In L134N, the differences in the $^{12}$C/$^{13}$C ratios between CCH and HC$_{3}$N seem to be smaller than those in L1521B and TMC-1. We discuss the origins of the $^{13}$C isotopic fractionation of CCH and investigate possible routes that cause the significantly high $^{12}$C/$^{13}$C ratio of CCH especially in young dark clouds, with the help of chemical simulations. The high $^{12}$C/$^{13}$C ratios of CCH seem to be caused by reactions between hydrocarbons (e.g., CCH, C$_{2}$H$_{2}$, $l,c$-C$_{3}$H) and C$^{+}$.
In order to understand the collapse dynamics of observed low-mass starless cores, we revise the conventional stability condition of hydrostatic Bonnor-Ebert spheres to take internal motions into account. Because observed starless cores resemble Bonnor-Ebert density structures, the stability and dynamics of the starless cores are frequently analyzed by comparing to the conventional stability condition of a hydrostatic Bonnor-Ebert sphere. However, starless cores are not hydrostatic but have observed internal motions. In this study, we take gaseous spheres with a homologous internal velocity field and derive stability conditions of the spheres utilizing a virial analysis. We propose two limiting models of spontaneous gravitational collapse: the collapse of critical Bonnor-Ebert spheres and uniform density spheres. The collapse of these two limiting models are intended to provide the lower and the upper limits, respectively, of the infall speeds for a given density structure. The results of our study suggest that the stability condition sensitively depends on internal motions. A homologous inward motion with a transonic speed can reduce the critical size compared to the static Bonnor-Ebert sphere by more than a factor of two. As an application of the two limiting models of spontaneous gravitational collapse, we compare the density structures and infall speeds of the observed starless cores L63, L1544, L1689B, and L694-2 to the two limiting models. L1689B and L694-2 seem to have been perturbed to result in faster infall motions than for spontaneous gravitational collapse.
129 - Pau Frau 2010
The Pipe Nebula is a massive, nearby dark molecular cloud with a low star-formation efficiency which makes it a good laboratory to study the very early stages of the star formation process. The Pipe Nebula is largely filamentary, and appears to be threaded by a uniform magnetic field at scales of few parsecs, perpendicular to its main axis. The field is only locally perturbed in a few regions, such as the only active cluster forming core B59. The aim of this study is to investigate primordial conditions in low-mass pre-stellar cores and how they relate to the local magnetic field in the cloud. We used the IRAM 30-m telescope to carry out a continuum and molecular survey at 3 and 1 mm of early- and late-time molecules toward four selected starless cores inside the Pipe Nebula. We found that the dust continuum emission maps trace better the densest regions than previous 2MASS extinction maps, while 2MASS extinction maps trace better the diffuse gas. The properties of the cores derived from dust emission show average radii of ~0.09 pc, densities of ~1.3x10^5 cm^-3, and core masses of ~2.5 M_sun. Our results confirm that the Pipe Nebula starless cores studied are in a very early evolutionary stage, and present a very young chemistry with different properties that allow us to propose an evolutionary sequence. All of the cores present early-time molecular emission, with CS detections toward all the sample. Two of them, Cores 40 and 109, present strong late-time molecular emission. There seems to be a correlation between the chemical evolutionary stage of the cores and the local magnetic properties that suggests that the evolution of the cores is ruled by a local competition between the magnetic energy and other mechanisms, such as turbulence.
(Abridged) The initial physical conditions of high-mass stars and protoclusters remain poorly characterized. To this end we present the first targeted ALMA 1.3mm continuum and spectral line survey towards high-mass starless clump candidates, selecting a sample of 12 of the most massive candidates ($400-4000, M_odot$) within 5 kpc. The joint 12+7m array maps have a high spatial resolution of $sim 3000, mathrm{au}$ ($sim 0.8^{primeprime}$) and have point source mass-completeness down to $sim 0.3, M_odot$ at $6sigma$ (or $1sigma$ column density sensitivity of $1.1times10^{22}, mathrm{cm^{-2}}$). We discover previously undetected signposts of low-luminosity star formation from CO (2-1) and SiO (5-4) bipolar outflows and other signatures towards 11 out of 12 clumps, showing that current MIR/FIR Galactic Plane surveys are incomplete to low- and intermediate-mass protostars ($lesssim 50, L_odot$). We compare a subset of the observed cores with a suite of radiative transfer models of starless cores. We find a high-mass starless core candidate with a model-derived mass consistent with $29^{52}_{15}, M_odot$ when integrated over size scales of $2times10^4, mathrm{au}$. Unresolved cores are poorly fit by starless core models, supporting the interpretation that they are protostellar even without detection of outflows. Substantial fragmentation is observed towards 10 out of 12 clumps. We extract sources from the maps using a dendrogram to study the characteristic fragmentation length scale. Nearest neighbor separations when corrected for projection are consistent with being equal to the clump average thermal Jeans length. Our findings support a hierarchical fragmentation process, where the highest density regions are not strongly supported against thermal gravitational fragmentation by turbulence or magnetic fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا