Do you want to publish a course? Click here

Categorified Noncommutative manifolds

472   0   0.0 ( 0 )
 Added by Rachel Martins
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct a noncommutative geometry with generalised `tangent bundle from Fell bundle $C^*$-categories ($E$) beginning by replacing pair groupoid objects (points) with objects in $E$. This provides a categorification of a certain class of real spectral triples where the Dirac operator is constructed from morphisms in a category. Applications for physics include quantisation via the tangent groupoid and new constraints on $D_{mathrm{finite}}$ (the fermion mass matrix).



rate research

Read More

The exact solution of a Cauchy problem related to a linear second-order difference equation with constant noncommutative coefficients is reported.
In this paper we study in a Hilbert space a homogeneous linear second order difference equation with nonconstant and noncommuting operator coefficients. We build its exact resolutive formula consisting in the explicit non-iterative expression of a generic term of the unknown sequence of vectors of the Hilbert space. Some non-trivial applications are reported with the aim of showing the usefulness and the broad applicability of our result.
82 - A.Kurov , G.Sardanashvily 2016
Superintegrable systems on a symplectic manifold conventionally are considered. However, their definition implies a rather restrictive condition 2n=k+m where 2n is a dimension of a symplectic manifold, k is a dimension of a pointwise Lie algebra of a superintegrable system, and m is its corank. To solve this problem, we aim to consider partially superintegrable systems on Poisson manifolds where k+m is the rank of a compatible Poisson structure. The according extensions of the Mishchenko-Fomenko theorem on generalized action-angle coordinates is formulated.
The trajectories of a qubit dynamics over the two-sphere are shown to be geodesics of certain Riemannian or physically-sound Lorentzian manifolds, both in the non-dissipative and dissipative formalisms, when using action-angle variables. Several aspects of the geometry and topology of these manifolds (qubit manifolds) have been studied for some special physical cases.
This paper contains a set of lecture notes on manifolds with boundary and corners, with particular attention to the space of quantum states. A geometrically inspired way of dealing with these kind of manifolds is presented,and explicit examples are given in order to clearly illustrate the main ideas.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا