No Arabic abstract
One hundred years ago, in 1908, Hermann Minkowski completed his proof that Maxwells equations are covariant under Lorentz transformations. During this process, he introduced a four-dimensional space called the Minkowskian space. In 1949, P. A. M. Dirac showed the Minkowskian space can be handled with the light-cone coordinate system with squeeze transformations. While the squeeze is one of the fundamental mathematical operations in optical sciences, it could serve useful purposes in two-level systems. Some possibilities are considered in this report. It is shown possible to cross the light-cone boundary in optical and two-level systems while it is not possible in Einsteins theory of relativity.
We study Landauers Principle for Repeated Interaction Systems (RIS) consisting of a reference quantum system $mathcal{S}$ in contact with a structured environment $mathcal{E}$ made of a chain of independent quantum probes; $mathcal{S}$ interacts with each probe, for a fixed duration, in sequence. We first adapt Landauers lower bound, which relates the energy variation of the environment $mathcal{E}$ to a decrease of entropy of the system $mathcal{S}$ during the evolution, to the peculiar discrete time dynamics of RIS. Then we consider RIS with a structured environment $mathcal{E}$ displaying small variations of order $T^{-1}$ between the successive probes encountered by $mathcal{S}$, after $nsimeq T$ interactions, in keeping with adiabatic scaling. We establish a discrete time non-unitary adiabatic theorem to approximate the reduced dynamics of $mathcal{S}$ in this regime, in order to tackle the adiabatic limit of Landauers bound. We find that saturation of Landauers bound is equivalent to a detailed balance condition on the repeated interaction system, reflecting the non-equilibrium nature of the repeated interaction system dynamics. This is to be contrasted with the generic saturation of Landauers bound known to hold for continuous time evolution of an open quantum system interacting with a single thermal reservoir in the adiabatic regime.
Generically, spectral statistics of spinless systems with time reversal invariance (TRI) and chaotic dynamics are well described by the Gaussian Orthogonal ensemble (GOE). However, if an additional symmetry is present, the spectrum can be split into independent sectors which statistics depend on the type of the groups irreducible representation. In particular, this allows the construction of TRI quantum graphs with spectral statistics characteristic of the Gaussian Symplectic ensembles (GSE). To this end one usually has to use groups admitting pseudo-real irreducible representations. In this paper we show how GSE spectral statistics can be realized in TRI systems with simpler symmetry groups lacking pseudo-real representations. As an application, we provide a class of quantum graphs with only $C_4$ rotational symmetry possessing GSE spectral statistics.
The history of complementary observables and mutual unbiased bases is reviewed. A characterization is given in terms of conditional entropy of subalgebras. The concept of complementarity is extended to non-commutative subalgebras. Complementary decompositions of a 4-level quantum system are described and a characterization of the Bell basis is obtained.
We study space-inhomogeneous quantum walks (QWs) on the integer lattice which we assign three different coin matrices to the positive part, the negative part, and the origin, respectively. We call them two-phase QWs with one defect. They cover one-defect and two-phase QWs, which have been intensively researched. Localization is one of the most characteristic properties of QWs, and various types of two-phase QWs with one defect exhibit localization. Moreover, the existence of eigenvalues is deeply related to localization. In this paper, we obtain a necessary and sufficient condition for the existence of eigenvalues. Our analytical methods are mainly based on the transfer matrix, a useful tool to generate the generalized eigenfunctions. Furthermore, we explicitly derive eigenvalues for some classes of two-phase QWs with one defect, and illustrate the range of eigenvalues on unit circles with figures. Our results include some results in previous studies, e.g. Endo et al. (2020).
In this paper a general definition of quantum conditional entropy for infinite-dimensional systems is given based on recent work of Holevo and Shirokov arXiv:1004.2495 devoted to quantum mutual and coherent informations in the infinite-dimensional case. The properties of the conditional entropy such as monotonicity, concavity and subadditivity are also generalized to the infinite-dimensional case.