Do you want to publish a course? Click here

Landauers Principle in Repeated Interaction Systems

64   0   0.0 ( 0 )
 Added by Yan Pautrat
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study Landauers Principle for Repeated Interaction Systems (RIS) consisting of a reference quantum system $mathcal{S}$ in contact with a structured environment $mathcal{E}$ made of a chain of independent quantum probes; $mathcal{S}$ interacts with each probe, for a fixed duration, in sequence. We first adapt Landauers lower bound, which relates the energy variation of the environment $mathcal{E}$ to a decrease of entropy of the system $mathcal{S}$ during the evolution, to the peculiar discrete time dynamics of RIS. Then we consider RIS with a structured environment $mathcal{E}$ displaying small variations of order $T^{-1}$ between the successive probes encountered by $mathcal{S}$, after $nsimeq T$ interactions, in keeping with adiabatic scaling. We establish a discrete time non-unitary adiabatic theorem to approximate the reduced dynamics of $mathcal{S}$ in this regime, in order to tackle the adiabatic limit of Landauers bound. We find that saturation of Landauers bound is equivalent to a detailed balance condition on the repeated interaction system, reflecting the non-equilibrium nature of the repeated interaction system dynamics. This is to be contrasted with the generic saturation of Landauers bound known to hold for continuous time evolution of an open quantum system interacting with a single thermal reservoir in the adiabatic regime.

rate research

Read More

The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than $kTlog 2$. We discuss Landauers principle for quantum statistical models describing a finite level quantum system S coupled to an infinitely extended thermal reservoir R. Using Arakis perturbation theory of KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural ergodicity assumption on the joint system S+R, that Landauers bound saturates for adiabatically switched interactions. The recent work of Reeb and Wolf on the subject is discussed and compared.
In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group that includes transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as is the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. A special feature of these previously constructed representations is that they all respect the non-relativistic equivalence principle, wherein the fictitious forces associated with linear acceleration can equivalently be described by gravitational forces. In this paper we exhibit a large class of cocycle representations of the Galilean line group that violate the equivalence principle. Nevertheless the classical mechanics analogue of these cocycle representations all respect the equivalence principle.
We present a variational approach which shows that the wave functions belonging to quantum systems in different potential landscapes, are pairwise linked to each other through a generalized continuity equation. This equation contains a source term proportional to the potential difference. In case the potential landscapes are related by a linear symmetry transformation in a finite domain of the embedding space, the derived continuity equation leads to generalized currents which are divergence free within this spatial domain. In a single spatial dimension these generalized currents are invariant. In contrast to the standard continuity equation, originating from the abelian $U(1)$-phase symmetry of the standard Lagrangian, the generalized continuity equations derived here, are based on a non-abelian $SU(2)$-transformation of a Super-Lagrangian. Our approach not only provides a rigorous theoretical framework to study quantum mechanical systems in potential landscapes possessing local symmetries, but it also reveals a general duality between quantum states corresponding to different Schr{o}dinger problems.
We present a formalism of Galilean quantum mechanics in non-inertial reference frames and discuss its implications for the equivalence principle. This extension of quantum mechanics rests on the Galilean line group, the semidirect product of the real line and the group of analytic functions from the real line to the Euclidean group in three dimensions. This group provides transformations between all inertial and non-inertial reference frames and contains the Galilei group as a subgroup. We construct a certain class of unitary representations of the Galilean line group and show that these representations determine the structure of quantum mechanics in non-inertial reference frames. Our representations of the Galilean line group contain the usual unitary projective representations of the Galilei group, but have a more intricate cocycle structure. The transformation formula for the Hamiltonian under the Galilean line group shows that in a non-inertial reference frame it acquires a fictitious potential energy term that is proportional to the inertial mass, suggesting the equivalence of inertial mass and gravitational mass in quantum mechanics.
Almost sixty years since Landauer linked the erasure of information with an increase of entropy, his famous erasure principle and byproducts like reversible computing are still subjected to debates in the scientific community. In this work we use the Liouville theorem to establish three different types of the relation between manipulation of information by a logical gate and the change of its physical entropy, corresponding to three types of the final state of environment. A time-reversible relation can be established when the final states of environment corresponding to different logical inputs are macroscopically distinguishable, showing a path to reversible computation and erasure of data with no entropy cost. A weak relation, giving the entropy change of $k ln 2$ for an erasure gate, can be deduced without any thermodynamical argument, only requiring the final states of environment to be macroscopically indistinguishable. The common strong relation that links entropy cost to heat requires the final states of environment to be in a thermal equilibrium. We argue in this work that much of the misunderstanding around the Landauers erasure principle stems from not properly distinguishing the limits and applicability of these three different relations. Due to new technological advances, we emphasize the importance of taking into account the time-reversible and weak types of relation to link the information manipulation and entropy cost in erasure gates beyond the considerations of environments in thermodynamic equilibrium.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا