Do you want to publish a course? Click here

Voltage-Controlled Negative Index in Vertically Coupled Quantum Dot Systems

117   0   0.0 ( 0 )
 Added by Huan Wang
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate that voltage-controlled negative index can be obtained in self-organized InAs quantum dot systems. As the bias voltage changes, the refractive index can be adjusted and controlled continuously from -7 to 7. Simultaneously, the absorption of light in the system will be very small. The single-negative index materials and the double-negative index materials can be achieved in different bias voltages.



rate research

Read More

170 - Huan Wang , Ka-Di Zhu 2008
The voltage-controlled Berry phases in two vertically coupled InGaAs/GaAs quantum dots are investigated theoretically. It is found that Berry phases can be changed dramatically from 0 to 2$pi$ (or 2$pi$ to 0) only simply by turning the external voltage. Under realistic conditions, as the tunneling is varied from $0.8eV$ to $0.9eV$ via a bias voltage, the Berry phases are altered obviously, which can be detected in an interference experiment. The scheme is expected to be useful in constructing quantum computation based on geometric phases in an asymmetrical double quantum dot controlled by voltage.
101 - A. Hogele , S. Seidl , M. Kroner 2004
The ground state of neutral and negatively charged excitons confined to a single self-assembled InGaAs quantum dot is probed in a direct absorption experiment by high resolution laser spectroscopy. We show how the anisotropic electron-hole exchange interaction depends on the exciton charge and demonstrate how the interaction can be switched on and off with a small dc voltage. Furthermore, we report polarization sensitive analysis of the excitonic interband transition in a single quantum dot as a function of charge with and without magnetic field.
Electron interactions in and between wires become increasingly complex and important as circuits are scaled to nanometre sizes, or employ reduced-dimensional conductors like carbon nanotubes, nanowires and gated high mobility 2D electron systems. This is because the screening of the long-range Coulomb potential of individual carriers is weakened in these systems, which can lead to phenomenon such as Coulomb drag: a current in one wire induces a voltage in a second wire through Coulomb interactions alone. Previous experiments have observed electron drag in wires separated by a soft electrostatic barrier $gtrsim$ 80 nm. Here, we measure both positive and negative drag between adjacent vertical quantum wires that are separated by $sim$ 15 nm and have independent contacts, which allows their electron densities to be tuned independently. We map out the drag signal versus the number of electron subbands occupied in each wire, and interpret the results in terms of momentum-transfer and charge-fluctuation induced transport models. For wires of significantly different subband occupancies, the positive drag effect can be as large as 25%.
Two strongly coupled quantum dots are theoretically and experimentally investigated. In the conductance measurements of a GaAs based low-dimensional system additional features to the Coulomb blockade have been detected at low temperatures. These regions of finite conductivity are compared with theoretical investigations of a strongly coupled quantum dot system and good agreement of the theoretical and the experimental results has been found.
By operating a one-electron quantum dot (fabricated between a multielectron dot and a one-electron reference dot) as a spectroscopic probe, we study the spin properties of a gate-controlled multielectron GaAs quantum dot at the transition between odd and even occupation number. We observe that the multielectron groundstate transitions from spin-1/2-like to singlet-like to triplet-like as we increase the detuning towards the next higher charge state. The sign reversal in the inferred exchange energy persists at zero magnetic field, and the exchange strength is tunable by gate voltages and in-plane magnetic fields. Complementing spin leakage spectroscopy data, the inspection of coherent multielectron spin exchange oscillations provides further evidence for the sign reversal and, inferentially, for the importance of non-trivial multielectron spin exchange correlations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا