Do you want to publish a course? Click here

Infrared Spectroscopy of Symbiotic Stars. VII. Binary Orbit and Long Secondary Period Variability of CH Cygni

189   0   0.0 ( 0 )
 Added by Kenneth Hinkle
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-dispersion spectroscopic observations are used to refine orbital elements for the symbiotic binary CH Cyg. The current radial velocities, added to a previously published 13 year time series of infrared velocities for the M giant in the CH Cyg symbiotic system, more than double the length of the time series to 29 years. The two previously identified velocity periods are confirmed. The long period, revised to 15.6 +/- 0.1 yr, is shown to result from a binary orbit with a 0.7 solar mass white dwarf and 2 solar mass M giant. Mass transfer to the white dwarf is responsible for the symbiotic classification. CH Cyg is the longest period S-type symbiotic known. Similarities with the longer period D-type systems are noted. The 2.1 year period is shown to be on Woods sequence D, which contains stars identified as having long secondary periods (LSP). The cause of the LSP variation in CH Cyg and other stars is unknown. From our review of possible causes, we identify g-mode non-radial pulsation as the leading mechanism for LSP variation in CH Cyg. If g-mode pulsation is the cause of the LSPs a radiative region is required near the photosphere of pulsating AGB stars.



rate research

Read More

We have computed, based on 17 infrared radial velocities, the first set of orbital elements for the M giant in the symbiotic binary V2116 Ophiuchi. The giants companion is a neutron star, the bright X-ray source GX 1+4. We find an orbital period of 1161 days by far the longest of any known X-ray binary. The orbit has a modest eccentricity of 0.10 with an orbital circularization time of less than 10^6 years. The large mass function of the orbit significantly restricts the mass of the M giant. Adopting a neutron-star mass of 1.35M(Sun), the maximum mass of the M giant is 1.22M(Sun), making it the less massive star. Derived abundances indicate a slightly subsolar metallicity. Carbon and nitrogen are in the expected ratio resulting from the red-giant first dredge-up phase. The lack of O-17 suggests that the M-giant has a mass less than 1.3M(Sun), consistent with our maximum mass. The red giant radius is 103R(Sun), much smaller than the estimated Roche lobe radius. Thus, the mass loss of the red giant is via a stellar wind. Although the M giant companion to the neutron star has a mass similar to the late-type star in low-mass X-ray binaries, its near-solar abundances and apparent runaway velocity are not fully consistent with the properties of this class of stars.
Context. We analyse the line and continuum spectra of the symbiotic system CH Cygni. Aims. To show that the colliding-wind model is valid to explain this symbiotic star at different phases. Methods. Peculiar observed features such as flickering, radio variation, X-ray emission, as well as the distribution of the nebulae and shells throughout the system are investigated by modelling the spectra at different epochs. The models account consistently for shock and photoionization and are constrained by absolute fluxes. Results. We find that the reverse shock between the stars leads to the broad lines observed during the active phases, as well as to radio and hard X-ray emission, while the expanding shock is invoked to explain the data during the transition phases.
67 - A. Danehkar 2020
RT Cru belongs to the rare class of hard X-ray emitting symbiotics, whose origin is not yet fully understood. In this work, we have conducted a detailed spectroscopic analysis of X-ray emission from RT Cru based on observations taken by the Chandra Observatory using the Low Energy Transmission Grating (LETG) on the High-Resolution Camera Spectrometer (HRC-S) in 2015 and the High Energy Transmission Grating (HETG) on the Advanced CCD Imaging Spectrometer S-array (ACIS-S) in 2005. Our thermal plasma modeling of the time-averaged HRC-S/LETG spectrum suggests a mean temperature of $kT sim 1.3$ keV, whereas $kT sim 9.6$ keV according to the time-averaged ACIS-S/HETG. The soft thermal plasma emission component ($sim1.3$ keV) found in the HRC-S is heavily obscured by dense materials ($> 5 times 10^{23}$ cm$^{-2}$). The aperiodic variability seen in its light curves could be due to changes in either absorbing material covering the hard X-ray source or intrinsic emission mechanism in the inner layers of the accretion disk. To understand the variability, we extracted the spectra in the low/hard and high/soft spectral states, which indicated higher plasma temperatures in the low/hard states of both the ACIS-S and HRC-S. The source also has a fluorescent iron emission line at 6.4 keV, likely emitted from reflection off an accretion disk or dense absorber, which was twice as bright in the HRC-S epoch compared to the ACIS-S. The soft thermal component identified in the HRC-S might be an indication of a jet that deserves further evaluations using high-resolution imaging observations.
79 - G. Ramsay 2002
We present observations of the proposed double degenerate polar RX J1914+24. Our optical and infrared spectra show no emission lines. This, coupled with the lack of significant levels of polarisation provide difficulties for a double degenerate polar interpretation. Although we still regard the double degenerate polar model as feasible, we have explored alternative scenarios for RX~J1914+24. These include a double degenerate algol system, a neutron star-white dwarf pair and an electrically powered system. The latter model is particularly attractive since it naturally accounts for the lack of both emission lines and detectable polarisation in RX J1914+24. The observed X-ray luminosity is consistent with the predicted power output. If true, then RX J1914+24 would be the first known stellar binary system radiating largely by electrical energy.
The dynamical structure of the atmosphere of Cepheids has been well studied in the optical. Several authors have found very interesting spectral features in the J band, but little data have been secured beyond 1.6 um. However, such observations can probe different radial velocities and line asymmetry regimes, and are able to provide crucial insights into stellar physics. Our goal was to investigate the infrared line-forming region in the K-band domain, and its impact on the projection factor and the k-term of Cepheids. We secured CRIRES observations for the long-period Cepheid l Car, with a focus on the unblended spectral line NaI2208.969 nm. We measured the corresponding radial velocities (by using the first moment method) and the line asymmetries (by using the bi-Gaussian method). These quantities are compared to the HARPS visible spectra we previously obtained on l Car. The optical and infrared radial velocity curves show the same amplitude (only about 3% of difference), with a slight radial velocity shift of about 0.5 +/- 0.3 km s^-1 between the two curves. Around the minimum radius (phase ~ 0.9) the visible radial velocity curve is found in advance compared to the infrared one (phase lag), which is consistent with an infrared line forming higher in the atmosphere (compared to the visible line) and with a compression wave moving from the bottom to the top of the atmosphere during maximum outward velocity. The asymmetry of the K-band line is also found to be significantly different from that of the optical line.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا