Do you want to publish a course? Click here

Predator-Prey Model for Stock Market Fluctuations

219   0   0.0 ( 0 )
 Added by Miquel Montero
 Publication date 2009
  fields Financial Physics
and research's language is English




Ask ChatGPT about the research

We present a dynamical model for the price evolution of financial assets. The model is based in a two level structure. In the first stage one finds an agent-based model that describes the present state of the investors beliefs, perspectives or strategies. The dynamics is inspired by a model for describing predator-prey population evolution: agents change their mind through self- or mutual interaction, and the decision is adopted on a random basis, with no direct influence of the price itself. One of the most appealing properties of such a system is the presence of large oscillations in the number of agents sharing the same perspective, what may be linked with the existence of bullish and bearish periods in financial markets. In the second stage one has the pricing mechanism, which will be driven by the relative population in the different investors groups. The price equation will depend on the specific nature of the species, and thus it may change from one market to the other: we will firstly present a simple model of excess demand, and subsequently consider a more elaborate liquidity model. The outcomes of both models are analysed and compared.



rate research

Read More

The three-state agent-based 2D model of financial markets as proposed by Giulia Iori has been extended by introducing increasing trust in the correctly predicting agents, a more realistic consultation procedure as well as a formal validation mechanism. This paper shows that such a model correctly reproduces the three fundamental stylised facts: fat-tail log returns, power-law volatility autocorrelation decay in time and volatility clustering.
One of the major issues studied in finance that has always intrigued, both scholars and practitioners, and to which no unified theory has yet been discovered, is the reason why prices move over time. Since there are several well-known traditional techniques in the literature to measure stock market volatility, a central point in this debate that constitutes the actual scope of this paper is to compare this common approach in which we discuss such popular techniques as the standard deviation and an innovative methodology based on Econophysics. In our study, we use the concept of Tsallis entropy to capture the nature of volatility. More precisely, what we want to find out is if Tsallis entropy is able to detect volatility in stock market indexes and to compare its values with the ones obtained from the standard deviation. Also, we shall mention that one of the advantages of this new methodology is its ability to capture nonlinear dynamics. For our purpose, we shall basically focus on the behaviour of stock market indexes and consider the CAC 40, MIB 30, NIKKEI 225, PSI 20, IBEX 35, FTSE 100 and SP 500 for a comparative analysis between the approaches mentioned above.
316 - Q. Wang , Y. Zhou , J. Shen 2021
This article comes up with an intraday trading strategy under T+1 using Markowitz optimization and Multilayer Perceptron (MLP) with published stock data obtained from the Shenzhen Stock Exchange and Shanghai Stock Exchange. The empirical results reveal the profitability of Markowitz portfolio optimization and validate the intraday stock price prediction using MLP. The findings further combine the Markowitz optimization, an MLP with the trading strategy, to clarify this strategys feasibility.
We study the daily trading volume volatility of 17,197 stocks in the U.S. stock markets during the period 1989--2008 and analyze the time return intervals $tau$ between volume volatilities above a given threshold q. For different thresholds q, the probability density function P_q(tau) scales with mean interval <tau> as P_q(tau)=<tau>^{-1}f(tau/<tau>) and the tails of the scaling function can be well approximated by a power-law f(x)~x^{-gamma}. We also study the relation between the form of the distribution function P_q(tau) and several financial factors: stock lifetime, market capitalization, volume, and trading value. We find a systematic tendency of P_q(tau) associated with these factors, suggesting a multi-scaling feature in the volume return intervals. We analyze the conditional probability P_q(tau|tau_0) for $tau$ following a certain interval tau_0, and find that P_q(tau|tau_0) depends on tau_0 such that immediately following a short/long return interval a second short/long return interval tends to occur. We also find indications that there is a long-term correlation in the daily volume volatility. We compare our results to those found earlier for price volatility.
We introduce a method to infer lead-lag networks of agents actions in complex systems. These networks open the way to both microscopic and macroscopic states prediction in such systems. We apply this method to trader-resolved data in the foreign exchange market. We show that these networks are remarkably persistent, which explains why and how order flow prediction is possible from trader-resolved data. In addition, if traders actions depend on past prices, the evolution of the average price paid by traders may also be predictable. Using random forests, we verify that the predictability of both the sign of order flow and the direction of average transaction price is strong for retail investors at an hourly time scale, which is of great relevance to brokers and order matching engines. Finally, we argue that the existence of trader lead-lag networks explains in a self-referential way why a given trader becomes active, which is in line with the fact that most trading activity has an endogenous origin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا