Do you want to publish a course? Click here

XMM-Newton observations of IGR J00291+5934: signs of a thermal spectral component during quiescence

103   0   0.0 ( 0 )
 Added by Campana
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present X-ray observations of the transient accretion-powered millisecond pulsar IGR J00291+5934 during quiescence. IGR J00291+5934 is the first source among accretion powered millisecond pulsars to show signs of a thermal component in its quiescent spectrum. Fitting this component with a neutron star atmosphere or a black body model we obtain soft temperatures (~64 eV and ~110 eV, respectively). As in other sources of this class a hard spectral component is also present, comprising more than 60% of the unabsorbed 0.5-10 keV flux. Interpreting the soft component as cooling emission from the neutron star, we can conclude that the compact object can be spun up to milliscond periods by accreting only <0.2 solar masses.



rate research

Read More

84 - A. Sanna , F. Pintore , E. Bozzo 2016
We report on the spectral and timing properties of the accreting millisecond X-ray pulsar IGR J00291+5934 observed by XMM-Newton and NuSTAR during its 2015 outburst. The source is in a hard state dominated at high energies by a comptonization of soft photons ($sim0.9$ keV) by an electron population with kT$_esim30$ keV, and at lower energies by a blackbody component with kT$sim0.5$ keV. A moderately broad, neutral Fe emission line and four narrow absorption lines are also found. By investigating the pulse phase evolution, we derived the best-fitting orbital solution for the 2015 outburst. Comparing the updated ephemeris with those of the previous outbursts, we set a $3sigma$ confidence level interval $-6.6times 10^{-13}$ s/s $< dot{P}_{orb} < 6.5 times 10^{-13}$ s/s on the orbital period derivative. Moreover, we investigated the pulse profile dependence on energy finding a peculiar behaviour of the pulse fractional amplitude and lags as a function of energy. We performed a phase-resolved spectroscopy showing that the blackbody component tracks remarkably well the pulse-profile, indicating that this component resides at the neutron star surface (hot-spot).
We report on optical and NIR observations obtained during and after the 2004 December discovery outburst of the X-ray transient and accretion-powered millisecond pulsar IGR J00291+5934. Our observations monitored the evolution of the brightness and the spectral properties of J00291 during the outburst decay towards quiescence. We also present optical, NIR and Chandra observations obtained during true quiescence. Photometry of the field during outburst reveals an optical and NIR counterpart that brightened from R~23 to R~17 and from K=19 to K~16. Spectral analysis of the RIJHK broadband photometry shows excess in the NIR bands that may be due to synchrotron emission. The Halpha emission line profile suggests the orbital inclination is ~22-32 degrees. The preferred range for the reddening towards the source is 0.7 < E(B-V) < 0.9, which is equivalent to 4.06E21 cm^-2 < NH < 5.22E21 cm^-2. The Chandra observations of the pulsar in its quiescent state gave an unabsorbed 0.5-10 keV flux for the best-fitting power-law model to the source spectrum of (7.0 +/- 0.9)E-14 ergs/cm^2/s (adopting a hydrogen column of 4.6E21 cm^-2. The fit resulted in a power-law photon index of 2.4 +/- 0.5. The (R-K)o color observed during quiescence supports an irradiated donor star and accretion disk. We estimate a distance of 2 to 4 kpc towards J00291 by using the outburst X-ray light curve and the estimated critical X-ray luminosity necessary to keep the outer parts of the accretion disk ionized. Using the quiescent X-ray luminosity and the spin period, we constrain the magnetic field of the neutron star to be < 3E8 Gauss.
We present an optical (gri) study during quiescence of the accreting millisecond X-ray pulsar IGR J00291+5934 performed with the 10.4m Gran Telescopio Canarias (GTC) in August 2014. Despite the source being in quiescence at the time of our observations, it showed a strong optical flaring activity, more pronounced at higher frequencies (i.e. the g band). Once the flares were subtracted, we tentatively recovered a sinusoidal modulation at the system orbital period in all bands, even if a significant phase shift with respect to an irradiated star, typical of accreting millisecond X-ray pulsars is detected. We conclude that the observed flaring could be a manifestation of the presence of an accretion disc in the system. The observed light curve variability could be explained by the presence of a superhump, which might be another proof of the formation of an accretion disc. In particular, the disc at the time of our observations was probably preparing to the new outburst of the source, that happened just a few months later, in 2015.
IGR J00291+5934 is the fastest-known accretion-powered X-ray pulsar, discovered during a transient outburst in 2004. In this paper, we report on Integral and Swift observations during the 2015 outburst, which lasts for $sim25$ d. The source has not been observed in outburst since 2008, suggesting that the long-term accretion rate has decreased by a factor of two since discovery. The averaged broad-band (0.1 - 250 keV) persistent spectrum in 2015 is well described by a thermal Comptonization model with a column density of $N_{rm H} approx4times10^{21}$ cm$^{-2}$, a plasma temperature of $kT_{rm e} approx50$ keV, and a Thomson optical depth of $tau_{rm T}approx1$. Pulsations at the known spin period of the source are detected in the Integral data up to the $sim150$ keV energy band. We also report on the discovery of the first thermonuclear burst observed from IGR J00291+5934, which lasts around 7 min and occurs at a persistent emission level corresponding to roughly $1.6%$ of the Eddington accretion rate. The properties of the burst suggest it is powered primarily by helium ignited at a depth of $y_{rm ign}approx1.5times10^9$ g cm$^{-2}$ following the exhaustion by steady burning of the accreted hydrogen. The Swift/BAT data from the first $sim20$ s of the burst provide indications of a photospheric radius expansion phase. Assuming this is the case, we infer a source distance of $d = 4.2 pm 0.3$ kpc.
130 - D.K. Galloway 2005
We report on observations of the sixth accretion-powered millisecond pulsar, IGR J00291+5934, with the Rossi X-Ray Timing Explorer. The source is a faint, recurrent X-ray transient initially identified by INTEGRAL. The 599 Hz (1.67 ms) pulsation had a fractional rms amplitude of 8% in the 2-20 keV range, and its shape was approximately sinusoidal. The pulses show an energy-dependent phase delay, with the 6-9 keV pulses arriving up to 85 us earlier than those at lower energies. No X-ray bursts, dips, or eclipses were detected. The neutron star is in a circular 2.46 hr orbit with a very low-mass donor, most likely a brown dwarf. The binary parameters of the system are similar to those of the first known accreting millisecond pulsar, SAX J1808.4-3658. Assuming that the mass transfer is driven by gravitational radiation and that the 2004 outburst fluence is typical, the 3-yr recurrence time implies a distance of at least 4 kpc.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا