Do you want to publish a course? Click here

Timescales for Low-Mass Star Formation in Extragalactic Environments: Implications for the Stellar IMF

92   0   0.0 ( 0 )
 Added by Manda Banerji
 Publication date 2008
  fields Physics
and research's language is English
 Authors Manda Banerji




Ask ChatGPT about the research

We investigate the physical and chemical conditions necessary for low-mass star formation in extragalactic environments by calculating various characteristic timescales associated with star formation for a range of initial conditions. The balance of these timescales indicates whether low-mass star formation is enhanced or inhibited under certain physical conditions. In this study, we consider timescales for free-fall, cooling, freeze-out, desorption, chemistry and ambipolar diffusion and their variations with changes in the gas density, metallicity, cosmic ray ionisation rate and FUV radiation field strength. We find that extragalactic systems with high FUV radiation field strengths and high cosmic ray fluxes considered at a range of metallicities, are likely to have enhanced low-mass star formation unless the magnetic pressure is sufficient to halt collapse. Our results indicate that this is only likely to be the case for high-redshift galaxies approaching solar metallicities. Unless this is true for all high-redshift sources, this study finds little evidence for a high-mass biased IMF at high redshifts.



rate research

Read More

Spatially resolved kinematics of nearby galaxies has shown that the ratio of dynamical- to stellar population-based estimates of the mass of a galaxy ($M_*^{rm JAM}/M_*$) correlates with $sigma_e$, if $M_*$ is estimated using the same IMF for all galaxies and the stellar M/L ratio within each galaxy is constant. This correlation may indicate that, in fact, the IMF is more dwarf-rich for galaxies with large $sigma$. We use this correlation to estimate a dynamical or IMF-corrected stellar mass, $M_*^{rm alpha_{JAM}}$, from $M_{*}$ and $sigma_e$ for a sample of $6 times 10^5$ SDSS galaxies for which spatially resolved kinematics is not available. We also compute the `virial mass estimate $k(n,R),R_e,sigma_R^2/G$, where $n$ is the Sersic index, in the SDSS and ATLAS$^{rm 3D}$ samples. We show that an $n$-dependent correction must be applied to the $k(n,R)$ values provided by Prugniel & Simien (1997). Our analysis also shows that the shape of the velocity dispersion profile in the ATLAS$^{rm 3D}$ sample varies weakly with $n$: $(sigma_R/sigma_e) = (R/R_e)^{-gamma(n)}$. The resulting stellar mass functions, based on $M_*^{rm alpha_{JAM}}$ and the recalibrated virial mass, are in good agreement. If the $M_*^{rm alpha_{JAM}}/M_* - sigma_e$ correlation is indeed due to the IMF, and stellar M/L gradients can be ignored, then our $phi(M_*^{rm alpha_{JAM}})$ is an estimate of the stellar mass function in which $sigma_e$-dependent variations in the IMF across the population have been accounted for. Using a Fundamental Plane based observational proxy for $sigma_e$ produces comparable results. By demonstrating that cheaper proxies are sufficiently accurate, our analysis should enable a more reliable census of the mass in stars for large galaxy samples, at a fraction of the cost. Our results are provided in tabular form.
Background: low-mass stars are the dominant product of the star formation process, and they trace star formation over the full range of environments, from isolated globules to clusters in the central molecular zone. In the past two decades, our understanding of the spatial distribution and properties of young low-mass stars and protostars has been revolutionized by sensitive space-based observations at X-ray and IR wavelengths. By surveying spatial scales from clusters to molecular clouds, these data provide robust measurements of key star formation properties. Goal: with their large numbers and their presence in diverse environments, censuses of low mass stars and protostars can be used to measure the dependence of star formation on environmental properties, such as the density and temperature of the natal gas, strengths of the magnetic and radiation fields, and the density of stars. Here we summarize how such censuses can answer three basic questions: i.) how is the star formation rate influenced by environment, ii.) does the IMF vary with environment, and iii.) how does the environment shape the formation of bound clusters? Answering these questions is an important step toward understanding star and cluster formation across the extreme range of environments found in the Universe. Requirements: sensitivity and angular resolution improvements will allow us to study the full range of environments found in the Milky Way. High spatial dynamic range (< 1arcsec to > 1degree scales) imaging with space-based telescopes at X-ray, mid-IR, and far-IR and ground-based facilities at near-IR and sub-mm wavelengths are needed to identify and characterize young stars.
Whether or not molecular clouds and embedded cloud fragments are stable against collapse is of utmost importance for the study of the star formation process. Only supercritical cloud fragments are able to collapse and form stars. The virial parameter, alpha=M_vir/M, which compares the virial to the actual mass, provides one way to gauge stability against collapse. Supercritical cloud fragments are characterized by alpha<2, as indicated by a comprehensive stability analysis considering perturbations in pressure and density gradients. Past research has suggested that virial parameters alpha>2 prevail in clouds. This would suggest that collapse towards star formation is a gradual and relatively slow process, and that magnetic fields are not needed to explain the observed cloud structure. Here, we review a range of very recent observational studies that derive virial parameters <<2 and compile a catalogue of 1325 virial parameter estimates. Low values of alpha are in particular observed for regions of high mass star formation (HMSF). These observations may argue for a more rapid and violent evolution during collapse. This would enable competitive accretion in HMSF, constrain some models of monolithic collapse, and might explain the absence of high--mass starless cores. Alternatively, the data could point at the presence of significant magnetic fields ~1 mG at high gas densities. We examine to what extent the derived observational properties might be biased by observational or theoretical uncertainties. For a wide range of reasonable parameters, our conclusions appear to be robust with respect to such biases.
Previous studies of the stellar mean metallicity and [Mg/Fe] values of massive elliptical (E)~galaxies suggest that their stars were formed in a very short timescale which cannot be reconciled with estimates from stellar population synthesis (SPS) studies and with hierarchical-assembly. Applying the previously developed chemical evolution code, GalIMF, which allows an environment-dependent stellar initial mass function (IMF) to be applied in the integrated galaxy initial mass function (IGIMF) theory instead of an invariant canonical IMF, the star formation timescales (SFT) of E galaxies are re-evaluated. The codes uniqueness lies in it allowing the galaxy-wide IMF and associated chemical enrichment to evolve as the physical conditions in the galaxy change. The calculated SFTs become consistent with the independent SPS results if the number of type Ia supernovae (SNIa) per unit stellar mass increases for more massive E~galaxies. This is a natural outcome of galaxies with higher star-formation rates producing more massive star clusters, spawning a larger number of SNIa progenitors per star. The calculations show E~galaxies with a stellar mass $approx 10^{9.5} M_odot$ to have had the longest mean SFTs of $approx2,$Gyr. The bulk of more massive E~galaxies were formed faster (SFT$,approx 1,$Gyr) leading to domination by M~dwarf stars and larger dynamical mass-to-light ratios as observed, while lower-mass galaxies tend to lose their gas supply more easily due to their shallower potential and therefore also have similarly-short mean SFTs. This work achieves, for the first time, consistency of the SFTs for early-type galaxies between chemical-enrichment and SPS modelling and leads to an improved understanding of how the star formation environment may affect the total number of SNIa per unit stellar mass formed.
We demonstrate the feasibility of detecting directly low mass stars in unresolved super-star clusters with ages < 10 Myr using near-infrared spectroscopy at modest resolution (R ~ 1000). Such measurements could constrain the ratio of high to low mass stars in these extreme star-forming events, providing a direct test on the universal nature of the initial mass function (IMF) compared to the disk of the Milky Way (Chabrier, 2003). We compute the integrated light of super-star clusters with masses of 10^6 Msun drawn from the Salpeter (1955) and Chabrier (2003) IMFs for clusters aged 1, 3, and 10 Myr. We combine, for the first time, results from Starburst99 (Leitherer et al. 1999) for the main sequence and post-main sequence population (including nebular emission) with pre-main sequence (PMS) evolutionary models (Siess et al. 2000) for the low mass stars as a function of age. We show that ~ 4-12 % of the integrated light observed at 2.2 microns comes from low mass PMS stars with late-type stellar absorption features at ages < 3 Myr. This light is discernable using high signal-to-noise spectra (> 100) at R=1000 placing constraints on the ratio of high to low mass stars contributing to the integrated light of the cluster.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا