No Arabic abstract
We describe a QCD motivated model for total cross-sections which uses the eikonal representation and incorporates QCD mini-jets to drive the rise with energy of the cross-section, while the impact parameter distribution is obtained through the Fourier transform of the transverse momentum distribution of soft gluons emitted in the parton-parton interactions giving rise to mini-jets in the final state. A singular but integral expression for the running coupling constant in the infrared region is part of this model.
We discuss the infrared limit for soft gluon kt-resummation and relate it to physical observables such as the intrinsic transverse momentum and the high energy limit of total cross-sections.
Inclusion of down to zero-momentum gluons and their k_t resummation is shown to quench the too fast rise of the mini jet cross section and thereby obtain realistic total cross-sections.
The eta-prime meson production in the reaction pp-->pp eta-prime has been studied at excess energies of Q = 26.5, 32.5 and 46.6 MeV using the internal beam facility COSY-11 at the cooler synchrotron COSY. The total cross sections as well as one angular distribution for the highest Q-value are presented. The excitation function of the near threshold data can be described by a pure s-wave phase space distribution with the inclusion of the proton-proton final state interaction and Coulomb effects. The obtained angular distribution of the eta-prime mesons is also consistent with pure s-wave production.
We discuss recent calculations of the survival probability of the large rapidity gaps in exclusive processes of the type pp --> p+A+p at high energies. Absorptive or screening effects are important, and one consequence is that the total cross section at the LHC is predicted to be only about 90 mb.
We have made a precise measurement of the inclusive jet cross section at 1800 GeV. The result is based on an integrated luminosity of 92 pb**-1 collected at the Fermilab Tevatron pbarp Collider with the DO detector. The measurement is reported as a function of jet transverse energy (60 GeV < ET < 500 GeV), and in the pseudorapidity intervals |eta|<0.5 and 0.1<eta<0.7. A preliminary measurement of the pseudorapidity dependence of inclusive jet production (eta<1.5) is also discussed. The results are in good agreement with predictions from next-to-leading order (NLO) quantum chromodynamics (QCD). DO has also determined the ratio of jet cross sections at $sqrt{s}$=630 GeV and $sqrt{s}$=1800 GeV ($|eta|leq 0.5$). This preliminary measurement differs from NLO QCD predictions.