No Arabic abstract
The class of Koch fractals is one of the most interesting families of fractals, and the study of complex networks is a central issue in the scientific community. In this paper, inspired by the famous Koch fractals, we propose a mapping technique converting Koch fractals into a family of deterministic networks, called Koch networks. This novel class of networks incorporates some key properties characterizing a majority of real-life networked systems---a power-law distribution with exponent in the range between 2 and 3, a high clustering coefficient, small diameter and average path length, and degree correlations. Besides, we enumerate the exact numbers of spanning trees, spanning forests, and connected spanning subgraphs in the networks. All these features are obtained exactly according to the proposed generation algorithm of the networks considered. The network representation approach could be used to investigate the complexity of some real-world systems from the perspective of complex networks.
In this paper we analyze the effect of a non-trivial topology on the dynamics of the so-called Naming Game, a recently introduced model which addresses the issue of how shared conventions emerge spontaneously in a population of agents. We consider in particular the small-world topology and study the convergence towards the global agreement as a function of the population size $N$ as well as of the parameter $p$ which sets the rate of rewiring leading to the small-world network. As long as $p gg 1/N$ there exists a crossover time scaling as $N/p^2$ which separates an early one-dimensional-like dynamics from a late stage mean-field-like behavior. At the beginning of the process, the local quasi one-dimensional topology induces a coarsening dynamics which allows for a minimization of the cognitive effort (memory) required to the agents. In the late stages, on the other hand, the mean-field like topology leads to a speed up of the convergence process with respect to the one-dimensional case.
In this paper, we define a stochastic Sierpinski gasket, on the basis of which we construct a network called random Sierpinski network (RSN). We investigate analytically or numerically the statistical characteristics of RSN. The obtained results reveal that the properties of RSN is particularly rich, it is simultaneously scale-free, small-world, uncorrelated, modular, and maximal planar. All obtained analytical predictions are successfully contrasted with extensive numerical simulations. Our network representation method could be applied to study the complexity of some real systems in biological and information fields.
We study the effective resistance of small-world resistor networks. Utilizing recent analytic results for the propagator of the Edwards-Wilkinson process on small-world networks, we obtain the asymptotic behavior of the disorder-averaged two-point resistance in the large system-size limit. We find that the small-world structure suppresses large network resistances: both the average resistance and its standard deviation approaches a finite value in the large system-size limit for any non-zero density of random links. We also consider a scenario where the link conductance decays as a power of the length of the random links, $l^{-alpha}$. In this case we find that the average effective system resistance diverges for any non-zero value of $alpha$.
We investigate the multifractals of the normalized first passage time on one-dimensional small-world network with both reflecting and absorbing barriers. The multifractals is estimated from the distribution of the normalized first passage time charactrized by the random walk on the small-world network with three fractions of edges rewired randomly. Particularly, our estimate is the fractal dimension D_0 = 0.917, 0.926, 0.930 for lattice points L = 80 and a randomly rewired fraction p = 0.2. The numerical result is found to disappear multifractal properties in the regime p> p_c, where p_c is the critical rewired fraction.
We present a family of scale-free network model consisting of cliques, which is established by a simple recursive algorithm. We investigate the networks both analytically and numerically. The obtained analytical solutions show that the networks follow a power-law degree distribution, with degree exponent continuously tuned between 2 and 3. The exact expression of clustering coefficient is also provided for the networks. Furthermore, the investigation of the average path length reveals that the networks possess small-world feature. Interestingly, we find that a special case of our model can be mapped into the Yule process.