Do you want to publish a course? Click here

Beam dynamics and wake-field simulations for the CLIC main linacs

108   0   0.0 ( 0 )
 Added by Roger M. Jones
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The CLIC linear collider aims at accelerating multiple bunches of electrons and positrons and colliding them at a centre of mass energy of 3 TeV. These bunches will be accelerated through X-band linacs, operating at an accelerating frequency of 12 GHz. Each beam readily excites wake-fields within the accelerating cavities of each linac. The transverse components of the wake-fields, if left unchecked, can dilute the beam emittance. The present CLIC design relies on heavy damping of these wake-fields in order to ameliorate the effects of the wake-fields on the beam emittance. Here we present initial results on simulations of the long-range wake-fields in these structures and on beam dynamics simulations. In particular, detailed simulations are performed, on emittance dilution due to beams initially injected with realistic offsets from the electrical centre of the cavities.



rate research

Read More

Energy Recovery Linacs provide high-energy beams, but decelerate those beams before dumping them, so that their energy is available for the acceleration of new particles. During this deceleration, any relative energy spread that is created at high energy is amplified by the ratio between high energy and dump energy. Therefore, Energy Recovery Linacs are sensitive to energy spread acquired at high energy, e.g. from wake fields. One can compensate the time-correlated energy spread due to wakes via energy-dependent time-of-flight terms in appropriate sections of an Energy Recovery Linac, and via high-frequency cavities. We show that nonlinear time-of-flight terms can only eliminate odd orders in the correlation between time and energy, if these terms are created by a beam transport within the linac that is common for accelerating and decelerating beams. If these two beams are separated, so that different beam transport sections can be used to produce time-of-flight terms suitable for each, also even-order terms in the energy spread can be eliminated. As an example, we investigate the potential of using this method for the Cornell x-ray Energy Recovery Linac. Via quadratic time-of-flight terms, the energy spread can be reduced by 66%. Alternatively, since the energy spread from the dominantly resistive wake fields of the analysed accelerator is approximately harmonic in time, a high-frequency cavity could diminish the energy spread by 81%. This approach would require bunch-lengthening and recompression in separate sections for accelerating and decelerating beams. Such sections have therefore been included in Cornells x-ray Energy Recovery Linac design.
71 - I. Wilson , W. Wuensch 2000
This paper outlines the RF design of the CLIC (Compact Linear Collider) 30 GHz main linac accelerating structure and gives the resulting longitudinal and transverse mode properties. The critical requirement for multibunch operation, that transverse wakefields be suppressed by two orders of magnitude within 0.7 ns (twenty fundamental mode cycles), has been demonstrated in a recent ASSET experiment. The feasibility of operating the structure at an accelerating gradient of 150 MV/m for 130 ns has yet to be demonstrated. Damage of the internal copper surfaces due to high electric fields or resulting from metal fatigue induced by cyclic surface heating effects are a major concern requiring further study.
The feasibility of a CLIC-LHC based FEL-nucleus collider is investigated. It is shown that the proposed scheme satisfies all requirements of an ideal photon source for the Nuclear Resonance Fluorescence method. The physics potential of the proposed collider is illustrated for a beam of Pb nuclei.
Extensive beam-based feedback systems are planned as an integral part of the Next Linear Collider (NLC) control system. Wakefield effects are a significant influence on the feedback design, imposing both architectural and algorithmic constraints. Studies are in progress to assure the optimal selection of devices and to refine and confirm the algorithms for the system design. We show the results of initial simulations, along with evaluations of system response for various conditions of ground motion and other operational disturbances.
86 - V. Kain 2016
A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا