Do you want to publish a course? Click here

Influence of the Dzyaloshinskii-Moriya exchange interaction on quantum phase interference of spins

122   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetization measurements of a Mn12mda wheel single-molecule magnet with a spin ground state of S = 7 show resonant tunneling and quantum phase interference, which are established by studying the tunnel rates as a function of a transverse field applied along the hard magnetization axis. Dzyaloshinskii-Moriya (DM) exchange interaction allows the tunneling between different spin multiplets. It is shown that the quantum phase interference of these transitions is strongly dependent on the direction of the DM vector.



rate research

Read More

In a recent Letter [1], Wernsdorfer et al. report an experimental study of a Mn12 molecular wheel which shows essentially identical behavior to the Mn12 wheel studied by Ramsey et al. [2]. In their Letter, Wernsdorfer et al. use the same model of a dimer of two exchange-coupled spins used in [2] as a basis to extend the study of the influence of the Dzyaloshinskii-Moriya (DM) interaction on the quantum tunneling of the magnetization of this system; in particular, they show that a tilt of the DM vector away from the uniaxial anisotropy axis can account for the asymmetric nature of the quantum interference minima associated with resonances between states of opposite parity, e.g., k = 1(A). We want to stress that the inclusion of DM interactions in a system with inversion symmetry cannot mix states of opposite parity; i.e., the parity operator commutes with the Hamiltonian. Consequently, the use by Wernsdorfer et al. of a single DM vector in a centrosymmetric dimer is strictly forbidden since it implicitly violates parity conservation. The authors correctly point out that the lack of an inversion center between each pair of manganese ions on the wheel justifies the possibility of local DM interactions, even though the complete molecule has an inversion center. However, these local DM interactions must also satisfy the molecular inversion symmetry; i.e., they cannot mix states of opposite parity.We agree that such DM interactions are not always completely innocuous; e.g., they can mix spin states having the same parity. Indeed, in kagome systems [3] (cited in [1]), this can lead to weak ferromagnetism. Nevertheless, the inversion symmetry of the lattice is preserved and parity is still conserved.
First version: del Barco et al. submitted recently a comment [arXiv:0812.4070] on our latest Phys. Rev. Lett. [Phys. Rev. Lett. 101, 237204 (2008)], claiming three basic mistakes. We show here that their claims are unjustified and based on erroneous calculations and hasty conclusions. Second version: reply to the modified version of del Barco et al. submitted to Phys. Rev. Lett.
The orientation of a chiral magnetic domain wall in a racetrack determines its dynamical properties. In equilibrium, magnetic domain walls are expected to be oriented perpendicular to the stripe axis. We demonstrate the appearance of a unidirectional domain wall tilt in out-of-plane magnetized stripes with biaxial anisotropy and Dzyaloshinskii--Moriya interaction (DMI). The tilt is a result of the interplay between the in-plane easy-axis anisotropy and DMI. We show that the additional anisotropy and DMI prefer different domain wall structure: anisotropy links the magnetization azimuthal angle inside the domain wall with the anisotropy direction in contrast to DMI, which prefers the magnetization perpendicular to the domain wall plane. Their balance with the energy gain due to domain wall extension defines the equilibrium magnetization the domain wall tilting. We demonstrate that the Walker field and the corresponding Walker velocity of the domain wall can be enhanced in the system supporting tilted walls.
The potential for application of magnetic skyrmions in high density storage devices provides a strong drive to investigate and exploit their stability and manipulability. Through a three-dimensional micromagnetic hysteresis study, we investigate the question of existence of skyrmions in cylindrical nanostructures of variable thickness. We quantify the applied field and thickness dependence of skyrmion states, and show that these states can be accessed through relevant practical hysteresis loop measurement protocols. As skyrmionic states have yet to be observed experimentally in confined helimagnetic geometries, our work opens prospects for developing viable hysteresis process-based methodologies to access and observe skyrmionic states.
The longitudinal spin-Seebeck effect (SSE) in magnetic insulator$|$non-magnetic metal heterostructures has been theoretically studied primarily with the assumption of an isotropic interfacial exchange coupling. Here, we present a general theory of the SSE in the case of an antisymmetric Dzyaloshinskii-Moriya interaction (DMI) at the interface, in addition to the usual Heisenberg form. We numerically evaluate the dependence of the spin current on the temperature and bulk DMI using a pyrochlore iridate as a model insulator with all-in all-out (AIAO) ground state configuration. We also compare the results of different crystalline surfaces arising from different crystalline orientations and conclude that the relative angles between the interfacial moments and Dzyaloshinskii-Moriya vectors play a significant role in the spin transfer. Our work extends the theory of the SSE by including the anisotropic nature of the interfacial Dzyaloshinskii-Moriya exchange interaction in magnetic insulator$|$non-magnetic metal heterostructures and can suggest possible materials to optimize the interfacial spin transfer in spintronic devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا