Do you want to publish a course? Click here

K-meson vector and tensor decay constants and BK-parameter from Nf=2 tmQCD

102   0   0.0 ( 0 )
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We present work in progress on the computation of the K-meson vector and tensor decay constants, as well as the B-parameter in Kaon oscillations. Our simulations are performed in a partially quenched setup, with two dynamical (sea) Wilson quark flavours, having a maximally twisted mass term. Valence quarks are either of the standard or the Osterwalder-Seiler maximally twisted variety. These two regularizations can be suitably combined in order to obtain a BK parameter which is both multiplicatively renormalizable and O(a) improved.



rate research

Read More

We present the results of a lattice QCD calculation of the pseudoscalar meson decay constants f_K, f_D and f_Ds, performed with N_f=2 dynamical fermions. The simulation is carried out with the tree-level improved Symanzik gauge action and with the twisted mass fermionic action at maximal twist. With respect to our previous study (0709.4574 [hep-lat]), here we have analysed data at three values of the lattice spacing (a=0.10 fm, 0.09 fm, 0.07 fm) and performed the continuum limit, and we have included at a=0.09 fm data with a lighter quark mass (m_pi = 260 MeV) and a larger volume (L = 2.7 fm), thus having at each lattice spacing L >= 2.4 fm and m_pi*L >= 3.6. Our result for the kaon decay constant is f_K=(157.5 +- 0.8|_{stat.} +- 3.3|_{syst.}) MeV and for the ratio f_K/f_pi=1.205 +- 0.006|_{stat.} +- 0.025|_{syst.}, in good agreement with the other N_f=2 and N_f=2+1 lattice calculations. For the D and D_s meson decay constants we obtain f_D=(205 +- 7|_{stat.} +- 7|_{syst.}) MeV, in good agreement with the CLEO-c experimental measurement and with other recent N_f=2 and N_f=2+1 lattice calculations, and f_{Ds}=(248 +- 3|_{stat.} +- 8|_{syst.}) MeV that, instead, is 2.3 sigma below the CLEO-c/BABAR experimental average, confirming the present tension between lattice calculations and experimental measurements.
136 - S. Di Vita , B. Haas , F. Mescia 2009
We present lattice results for the form factors relevant in the K -> pion and D -> pion semileptonic decays, obtained from simulations with two flavors of dynamical twisted-mass fermions and pion masses as light as 260 MeV. For K -> pion decays we discuss the estimates of the main sources of systematic uncertainties, including the quenching of the strange quark, leading to our final result f+(0) = 0.9560 (57) (62). Combined with the latest experimental data, our value of f+(0) implies for the CKM matrix element |Vus| the value 0.2267 (5) (20) consistent with the first-row CKM unitarity. For D -> pion decays the application of Heavy Meson Chiral Perturbation Theory allows to extrapolate our results for both the scalar and the vector form factors at the physical point with quite good accuracy, obtaining a nice agreement with the experimental data. In particular at zero-momentum transfer we obtain f+(0) = 0.64 (5).
We present the first unquenched, continuum limit, lattice QCD results for the matrix elements of the operators describing neutral kaon oscillations in extensions of the Standard Model. Owing to the accuracy of our calculation on Delta S=2 weak Hamiltonian matrix elements, we are able to provide a refined Unitarity Triangle analysis improving the bounds coming from model independent constraints on New Physics. In our non-perturbative computation we use a combination of Nf=2 maximally twisted sea quarks and Osterwalder-Seiler valence quarks in order to achieve both O(a)-improvement and continuum-like renormalization properties for the relevant four-fermion operators. The calculation of the renormalization constants has been performed non-perturbatively in the RI-MOM scheme. Based on simulations at four values of the lattice spacing and a number of quark masses we have extrapolated/interpolated our results to the continuum limit and physical light/strange quark masses.
We present the results of a lattice QCD calculation of the pseudoscalar meson decay constants fpi, fK, fD and fDs, performed with Nf=2 dynamical fermions. The simulation is carried out with the tree-level improved Symanzik gauge action and with the twisted mass fermionic action at maximal twist. We have considered for the final analysis three values of the lattice spacing, a~0.10 fm, 0.09 fm and 0.07 fm, with pion masses down to mpi~270 MeV. Our results for the light meson decay constants are fK=158.1(2.4) MeV and fK/fpi=1.210(18). From the latter ratio, by using the experimental determination of Gamma(K-->mu nu_mu (gamma))/ Gamma(pi--> mu nu_mu (gamma)) and the average value of |Vud| from nuclear beta decays, we obtain |Vus|=0.2222(34), in good agreement with the determination from semileptonic Kl3 decays and the unitarity constraint. For the D and Ds meson decay constants we obtain fD=197(9) MeV, fDs=244(8) MeV and fDs/fD=1.24(3). Our result for fD is in good agreement with the CLEO experimental measurement. For fDs our determination is smaller than the PDG 2008 experimental average but in agreement with a recent improved measurement by CLEO at the 1.4 sigma level.
On a lattice with 2+1-flavor dynamical domain-wall fermions at the physical pion mass, we calculate the decay constants of $D_{s}^{(*)}$, $D^{(*)}$ and $phi$. The lattice size is $48^3times96$, which corresponds to a spatial extension of $sim5.5$ fm with the lattice spacing $aapprox 0.114$ fm. For the valence light, strange and charm quarks, we use overlap fermions at several mass points close to their physical values. Our results at the physical point are $f_D=213(5)$ MeV, $f_{D_s}=249(7)$ MeV, $f_{D^*}=234(6)$ MeV, $f_{D_s^*}=274(7)$ MeV, and $f_phi=241(9)$ MeV. The couplings of $D^*$ and $D_s^*$ to the tensor current ($f_V^T$) can be derived, respectively, from the ratios $f_{D^*}^T/f_{D^*}=0.91(4)$ and $f_{D_s^*}^T/f_{D_s^*}=0.92(4)$, which are the first lattice QCD results. We also obtain the ratios $f_{D^*}/f_D=1.10(3)$ and $f_{D_s^*}/f_{D_s}=1.10(4)$, which reflect the size of heavy quark symmetry breaking in charmed mesons. The ratios $f_{D_s}/f_{D}=1.16(3)$ and $f_{D_s^*}/f_{D^*}=1.17(3)$ can be taken as a measure of SU(3) flavor symmetry breaking.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا