Do you want to publish a course? Click here

AGILE observation of a gamma-ray flare from the blazar 3C 279

117   0   0.0 ( 0 )
 Added by Andrea Giuliani
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. We report the detection by the AGILE satellite of an intense gamma-ray flare from the gamma-ray source 3EG J1255-0549, associated to the Flat Spectrum Radio Quasar 3C 279, during the AGILE pointings towards the Virgo Region on 2007 July 9-13. Aims. The simultaneous optical, X-ray and gamma-ray covering allows us to study the spectral energy distribution (SED) and the theoretical models relative to the flaring episode of mid-July. Methods. AGILE observed the source during its Science Performance Verification Phase with its two co-aligned imagers: the Gamma- Ray Imaging Detector (GRID) and the hard X-ray imager (Super-AGILE) sensitive in the 30 MeV - 50 GeV and 18 - 60 keV respectively. During the AGILE observation the source was monitored simultaneously in optical band by the REM telescope and in the X-ray band by the Swift satellite through 4 ToO observations. Results. During 2007 July 9-13 July 2007, AGILE-GRID detected gamma-ray emission from 3C 279, with the source at ~2 deg from the center of the Field of View, with an average flux of (210+-38) 10^-8 ph cm^-2 s^-1 for energy above 100 MeV. No emission was detected by Super-AGILE, with a 3-sigma upper limit of 10 mCrab. During the observation lasted about 4 days no significative gamma-ray flux variation was observed. Conclusions. The Spectral Energy Distribution is modelled with a homogeneous one-zone Synchrotron Self Compton emission plus the contributions by external Compton scattering of direct disk radiation and, to a lesser extent, by external Compton scattering of photons from the Broad Line Region.



rate research

Read More

133 - S. Vercellone 2008
We report the first blazar detection by the AGILE satellite. AGILE detected 3C 454.3 during a period of strongly enhanced optical emission in July 2007. AGILE observed the source with a dedicated repointing during the period 2007 July 24-30 with its two co-aligned imagers, the Gamma-Ray Imaging Detector and the hard X-ray imager Super-AGILE sensitive in the 30 MeV-50 GeV and 18-60 keV, respectively. Over the entire period, AGILE detected gamma-ray emission from 3C 454.3 at a significance level of 13.8-$sigma$ with an average flux (E$>$100 MeV) of $(280 pm 40) times 10^{-8}$ photons cm$^{-2}$ s$^{-1}$. The gamma-ray flux appears to be variable towards the end of the observation. No emission was detected by Super-AGILE in the energy range 20-60 keV, with a 3-$sigma$ upper limit of $2.3 times 10^{-3}$ photons cm$^{-2}$ s$^{-1}$. The gamma-ray flux level of 3C 454.3 detected by AGILE is the highest ever detected for this quasar and among the most intense gamma-ray fluxes ever detected from Flat Spectrum Radio Quasars.
We report the AGILE detection and the results of the multifrequency follow-up observations of a bright $gamma$-ray flare of the blazar 3C 279 in June 2015. We use AGILE-GRID and Fermi-LAT $gamma$-ray data, together with Swift-XRT, Swift-UVOT, and ground-based GASP-WEBT optical observations, including polarization information, to study the source variability and the overall spectral energy distribution during the $gamma$-ray flare. The $gamma$-ray flaring data, compared with as yet unpublished simultaneous optical data which allow to set constraints on the big blue bump disk luminosity, show very high Compton dominance values of $sim 100$, with a ratio of $gamma$-ray to optical emission rising by a factor of three in a few hours. The multi-wavelength behavior of the source during the flare challenges one-zone leptonic theoretical models. The new observations during the June 2015 flare are also compared with already published data and non-simultaneous historical 3C 279 archival data.
We present the gamma-ray data of the extraordinary flaring activity above 100 MeV from the flat spectrum radio quasar 3C 454.3 detected by AGILE during the month of December 2009. 3C 454.3, that has been among the most active blazars of the FSRQ type since 2007, was detected in the gamma-ray range with a progressively rising flux since November 10, 2009. The gamma-ray flux reached a value comparable with that of the Vela pulsar on December 2, 2009. Remarkably, between December 2 and 3, 2009 the source more than doubled its gamma-ray emission and became the brightest gamma-ray source in the sky with a peak flux of F_{gamma,p} = (2000 pm 400) x 10^-8 ph cm^-2 s^-1 for a 1-day integration above 100 MeV. The gamma-ray intensity decreased in the following days with the source flux remaining at large values near F simeq (1000 pm 200) x 10^-8 ph cm^-2 s^-1 for more than a week. This exceptional gamma-ray flare dissipated among the largest ever detected intrinsic radiated power in gamma-rays above 100 MeV (L_{gamma, source, peak} simeq 3 x 10^46 erg s^-1, for a relativistic Doppler factor of {delta} simeq 30). The total isotropic irradiated energy of the month-long episode in the range 100 MeV - 3 GeV is E_{gamma,iso} simeq 10^56 erg. We report the intensity and spectral evolution of the gamma-ray emission across the flaring episode. We briefly discuss the important theoretical implications of our detection.
The intermediate-frequency peaked BL Lacertae (IBL) object 3C 66A is detected during 2007 - 2008 in VHE (very high energy: E > 100 GeV) gamma-rays with the VERITAS stereoscopic array of imaging atmospheric Cherenkov telescopes. An excess of 1791 events is detected, corresponding to a significance of 21.2 standard deviations (sigma), in these observations (32.8 hours live time). The observed integral flux above 200 GeV is 6% of the Crab Nebulas flux and shows evidence for variability on the time-scale of days. The measured energy spectrum is characterized by a soft power law with photon index Gamma = 4.1 +- 0.4_stat +- 0.6_sys. The radio galaxy 3C 66B is excluded as a possible source of the VHE emission.
The optical polarization plane of some blazars occasionally exhibits smooth hundred degree long rotations. Multiple theoretical models have been proposed to explain the nature of such events. A deterministic origin of these rotations, however, remains uncertain. We aim to find repeating patterns of flares in gamma-ray light curves of blazars, which accompany optical polarization plane rotations. Such patterns have been predicted to occur by one of the models explaining this phenomenon. For the blazar 3C 279, where multiple polarization plane rotations have been reported in the literature, we obtain the Fermi-LAT gamma-ray light curve and analyze its intervals adjacent to polarization plane rotations. We find a complex characteristic pattern of flares in the gamma-ray light curve that is repeated during periods adjacent to three large amplitude EVPA rotation events in 3C 279. We discover a hidden EVPA rotation, which can only be seen in the relative Stokes parameters plane and that occurred simultaneously with the fourth repetition of the pattern. This finding strongly favors the hypothesis of emission features propagating in the jet as the reason of optical polarization plane rotations. Furthermore, it is compatible with the hypothesis of a sheath in the jet comprised of more slowly propagating emission features.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا