Do you want to publish a course? Click here

CNONa and 12C/13C in giants of 10 open clusters

179   0   0.0 ( 0 )
 Added by Rodolfo Smiljanic
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Evolved low-mass stars of a wide range of metallicity bear signatures of a non-standard mixing event in their surface abundances of Li, C, and N, and in their 12C/13C ratio. A Na overabundance has also been reported in some giants of open clusters but remains controversial. The cause of the extra-mixing has been attributed to thermohaline convection that should take place after the RGB bump for low-mass stars and on the early-AGB for more massive objects. To track the occurrence of this process over a wide mass range, we derive in a homogeneous way the abundances of C, N, O, and Na, as well as the 12C/13C ratio in a sample of 31 giants of 10 open clusters with turn-off masses from 1.7 to 3.1 Msun. A group of first ascent red giants with M/Msun leq 2.5 exhibits lower [N/C] ratios than those measured in clump giants of the same mass range, suggesting an additional increase in the [N/C] ratio after the first dredge-up. The sodium abundances corrected from NLTE are found to be about solar. [Na/Fe] shows a slight increase of 0.10 dex as a function of stellar mass in the 1.8 to 3.2 Msun range covered by our sample, in agreement with standard first dredge-up predictions. Our results do not support previous claims of sodium overabundances as high as +0.60 dex. An anti-correlation between 12C/13C and turn-off mass is identified and interpreted as being caused by a post-bump thermohaline mixing. Moreover, we find low 12C/13C ratios in a few intermediate-mass early-AGB stars, confirming that an extra-mixing process also operates in stars that do not experienced the RGB bump. In this case, the extra-mixing possibly acts on the early-AGB, in agreement with theoretical expectations for thermohaline mixing. [abridged]



rate research

Read More

The behaviour of the Delta nu =2 CO bands around 2.3 micron was examined by comparing observed and synthetic spectra in stars in globular clusters of different metallicity. Changes in the 12C/13C isotopic ratio and the carbon abundances were investigated in stars from 3500--4900 K in the galactic globular clusters M71, M5, M3 and M13, covering the metallicity range from --0.7 to --1.6. We found relatively low carbon abundances that are not affected by the value of oxygen abundance. For most giants the 12C/13C ratios determined are consistent with the equilibrium value for the CN cycle. This suggests complete mixing on the ascent of the red giant branch, in contrast to the substantially higher values predicted across this range of parameters by the current generation of models. We found some evidence for a larger dispersion of CDC in giants of M71 of metallicity [mu] = [M/H] = -0.7 in comparison with the giants of M3, M5 and M13, which are more metal deficient. Finally, we show evidence for lower 12C/13C in giants of globular clusters with lower metallicities, as predicted by theory.
Existing measurements of the angular distributions of the ground-state to ground-state transitions of the 12C(d,p)13C and 13C(p,d)12C neutron-transfer reactions have been analyzed systematically using the Johnson-Soper adiabatic and distorted-wave theories. When using a consistent set of physical inputs the deduced spectroscopic factors are consistent to within 20% for incident deuteron energies from 6 to 60 MeV. By contrast, original analyses of many of these data quoted spectroscopic factors that differed by up to a factor of five. The present analysis provides an important reference point from which to assess the requirements of future spectroscopic analyses of transfer reactions measured in inverse kinematics using rare nuclei.
288 - M. Spite 2006
Extremely metal-poor (EMP) stars preserve a fossil record of the composition of the ISM when the Galaxy formed. It is crucial, however, to verify whether internal mixing has modified their surface. We aim to understand the CNO abundance variations found in some, but not all EMP field giants analysed earlier. Mixing beyond the first dredge-up of standard models is required, and its origin needs clarification.The 12C/13C ratio is the most robust diagnostic of deep mixing, because it is insensitive to the adopted stellar parameters and should be uniformly high in near-primordial gas. We have measured 12C and 13C abundances in 35 EMP giants from high-quality VLT/UVES spectra. Correlations with other abundance data are used to study the depth of mixing.The 12C/13C ratio is found to correlate with [C/Fe] (and Li/H), and clearly anti-correlate with [N/Fe]. Evidence for such deep mixing is observed in giants above log L/Lsolar = 2.6, brighter than in less metal-poor stars, but matching the bump in the luminosity function in both cases. Three of the mixed stars are also Na-and Al-rich, another signature of deep mixing, but signatures of the ON cycle are not clearly seen in these stars. Extra mixing processes clearly occur in luminous RGB stars. The Na-and Al-rich giants could be AGB stars themselves, but an inhomogeneous early ISM or pollution from a binary companion remain possible alternatives (abridged).
Nitrogen abundances and carbon isotope ratios (12C/13C) in the atmospheres of red giants are known to be influenced by dredge-up of H-burning products and serve as useful probes to study the nature of evolution-induced envelope mixing. We determined the [N/Fe] and 12C/13C ratios for 239 late-G/early-K giant stars by applying the spectrum-fitting technique to the 12CN and 13CN lines in the ~8002-8005A region, with an aim to investigate how these quantities are related to other similar mixing-affected indicators which were already reported in our previous work. It was confirmed that [N/Fe] values are generally supersolar (typically by several tenths dex though widely differ from star to star), anti-correlated with [C/Fe], and correlated with [Na/Fe], as expected from theory. As seen from their dependence upon stellar parameters, it appears that mixing tends to be enhanced with an increase of stellar luminosity (or mass) and rotational velocity, which is also reasonable from the theoretical viewpoint. In contrast, the resulting 12C/13C ratios turned out to be considerably diversified in the range of ~5-50 (with a peak around ~20), without showing any systematic dependence upon C or N abundance anomalies caused by the mixing of CN-cycled material. It thus appears that our understanding on the photospheric 12C/13C ratios in red giants is still incomplete, for which more observational studies would be required.
We present BVI CCD photometry of 10 northern open clusters, Berkeley 43, Berkeley 45, Berkeley 47, NGC 6846, Berkeley 49, Berkeley 51, Berkeley 89, Berkeley 91, Tombaugh 4 and Berkeley 9, and estimate their fundamental parameters. Eight of the clusters are located in the first galactic quadrant and 2 are in the second. This is the first optical photometry for 8 clusters. All of them are embedded in rich galactic fields and have large reddening towards them (E(B-V) = 1.0 - 2.3 mag). There is a possibility that some of these difficult-to-study clusters may be asterisms rather than physical systems, but assuming they are physical clusters, we find that 8 of them are located beyond 2 kpc, and 6 clusters (60% of the sample) are located well above or below the Galactic plane. Seven clusters have ages 500 Myr or less and the other 3 are 1 Gyr or more in age. This sample of clusters has increased the optical photometry of clusters in the second half of the first galactic quadrant, beyond 2 kpc, from 10 to 15. NGC 6846 is found to be one of the most distant clusters in this region of the Galaxy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا