No Arabic abstract
Molecular motors convert chemical energy into mechanical work while operating in an environment dominated by Brownian motion. The aim of this paper is to explore the flow of energy between the molecular motors and its surroundings, in particular, its efficiency. Based on the Fokker-Planck equation with either $N$ or infinite chemical states, we find that the energy efficiency of the molecular motors, whether the Stokes efficiency or the usual thermodynamic efficiency, is strictly bounded by 1, because of the dissipation of the energy in both the overdamped surroundings and in the process of the chemical reaction.
The extraction of membrane tubes by molecular motors is known to play an important role for the transport properties of eukaryotic cells. By studying a generic class of models for the tube extraction, we discover a rich phase diagram. In particular we show that the density of motors along the tube can exhibit shocks, inverse shocks and plateaux, depending on parameters which could in principle be probed experimentally. In addition the phase diagram exhibits interesting reentrant behavior.
Molecular motors transduce chemical energy obtained from hydrolizing ATP into mechanical work exerted against an external force. We calculate their efficiency at maximum power output for two simple generic models and show that the qualitative behaviour depends crucially on the position of the transition state. Specifically, we find a transition state near the initial state (sometimes characterized as a power stroke) to be most favorable with respect to both high power output and high efficiency at maximum power. In this regime, driving the motor further out of equilibrium by applying higher chemical potential differences can even, counter-intuitively, increase the efficiency.
We introduce a stochastic lattice gas model including two particle species and two parallel lanes. One lane with exclusion interaction and directed motion and the other lane without exclusion and unbiased diffusion, mimicking a micotubule filament and the surrounding solution. For a high binding affinity to the filament, jam-like situations dominate the systems behaviour. The fundamental process of position exchange of two particles is approximated. In the case of a many-particle system, we were able to identify a regime in which the system is rather homogenous presenting only small accumulations of particles and a regime in which an important fraction of all particles accumulates in the same cluster. Numerical data proposes that this cluster formation will occur at all densities for large system sizes. Coupling of several filaments leads to an enhanced cluster formation compared to the uncoupled system, suggesting that efficient bidirectional transport on one-dimensional filaments relies on long-ranged interactions and track formation.
We analyze theoretically the problem of cargo transport along microtubules by motors of two species with opposite polarities. We consider two different one-dimensional models previously developed in the literature. On the one hand, a quite widespread model which assumes equal force sharing, here referred to as mean field model (MFM). On the other hand, a stochastic model (SM) which considers individual motor-cargo links. We find that in generic situations the MFM predicts larger cargo mean velocity, smaller mean run time and less frequent
Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells.