No Arabic abstract
We present it ab initio calculations of the electronic energy loss of charged particles moving outside a magnesium surface, from a realistic description of the one-electron band structure and a full treatment of the dynamical electronic response of valence electrons. Our results indicate that the finite width of the plasmon resonance, which is mainly due to the presence of band-structure effects, strongly modifies the asymptotic behaviour of the energy loss at large distances from the surface. This effect is relevant for the understanding of the interaction between charged particles and the internal surface of microcapillaries.
A survey is presented of various aspects of the interaction of charged particles with solids. In the framework of many-body perturbation theory, we study the nonlinear interaction of charged particles with a free gas of interacting electrons; in particular, nonlinear corrections to the stopping power are analyzed, and special emphasis is made on the separate contributions that are originated in the excitation of either electron-hole pairs, single plasmons, or double plasmons. Ab initio calculations of the electronic energy loss of ions moving in real solids are also presented, and the energy loss of charged particles interacting with simple metal surfaces is addressed.
Deposition/removal of metal atoms on the hex reconstructed (100) surface of Au, Pt and Ir should present intriguing aspects, since a new island implies hex -> square deconstruction of the substrate, and a new crater the square -> hex reconstruction of the uncovered layer. To obtain a microscopic understanding of how islands/craters form in these conditions, we have conducted simulations of island and crater growth on Au(100), whose atomistic behavior, including the hex reconstruction on top of the square substrate, is well described by mean s of classical many-body forces. By increasing/decreasing the Au coverage on Au(100), we find that island/craters will not grow unless they exceed a critical size of about 8-10 atoms. This value is close to that which explains the nonlinear coverage dependence observed in molecular adsorption on the closely related surface Pt (100). This threshold size is rationalized in terms of a transverse step correlation length, measuring the spatial extent where reconstruction of a given plane is disturbed by the nearby step.
A mechanistic understanding of adhesion in soft materials is critical in the fields of transportation (tires, gaskets, seals), biomaterials, micro-contact printing, and soft robotics. Measurements have long demonstrated that the apparent work of adhesion coming into contact is consistently lower than the intrinsic work of adhesion for the materials, and that there is adhesion hysteresis during separation, commonly explained by viscoelastic dissipation. Still lacking is a quantitative experimentally validated link between adhesion and measured topography. Here, we used in situ measurements of contact size to investigate the adhesion behavior of soft elastic polydimethylsiloxane (PDMS) hemispheres (modulus ranging from 0.7 to 10 MPa) on four different polycrystalline diamond substrates with topography characterized across eight orders of magnitude, including down to the r{A}ngstrom-scale. The results show that the reduction in apparent work of adhesion is equal to the energy required to achieve conformal contact. Further, the energy loss during contact and removal is equal to the product of intrinsic work of adhesion and the true contact area. These findings provide a simple mechanism to quantitatively link the widely-observed adhesion hysteresis to roughness rather than viscoelastic dissipation.
Determining accurate absolute surface energies for polar surfaces of semiconductors has been a great challenge in decades. Here, we propose pseudo-hydrogen passivation to calculate them, using density functional theory approaches. By calculating the energy contribution from pseudo-hydrogen using either a pseudo molecule method or a tetrahedral cluster method, we obtained (111) surfaces energies of Si, GaP, and ZnS with high self-consistency. This method quantitatively confirms that surface energy is determined by the number and the energy of dangling bonds of surface atoms. Our findings may greatly enhance the basic understandings of different surfaces and lead to novel strategies in the crystal growth.
We have developed a multi-objective optimization (MOO) procedure to construct modified-embedded-atom-method (MEAM) potentials with minimal manual fitting. This procedure has been applied successfully to develop a new MEAM potential for magnesium. The MOO procedure is designed to optimally reproduce multiple target values that consist of important materials properties obtained from experiments and first-principles calculations based on density-functional theory (DFT). The optimized target quantities include elastic constants, cohesive energies, surface energies, vacancy formation energies, and the forces on atoms in a variety of structures. The accuracy of the new potential is assessed by computing several material properties of Mg and comparing them with those obtained from other potentials previously published. We found that the present MEAM potential yields a significantly better overall agreement with DFT calculations and experiments.