Do you want to publish a course? Click here

Detection of Hot Gas in Galaxy Groups via the Sunyaev-Zeldovich Effect

145   0   0.0 ( 0 )
 Added by Kavilan Moodley
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by the observed shortfall of baryons in the local universe, we investigate the ability of high resolution cosmic microwave background (CMB) experiments to detect hot gas in the outer regions of nearby group halos. We construct hot gas models with the gas in hydrostatic equilibrium with the dark matter and described by a polytropic equation of state. We also consider models that add entropy to the gas in line with constraints from X-ray observations. We calculate the thermal Sunyaev-Zeldovich (SZ) signal in these halos and compare it to the anticipated sensitivities of forthcoming SZ survey experiments such as ACT, PLANCK and SPT. Using a multi-frequency Wiener filter we derive SZ detectability limits as a function of halo mass and redshift in the presence of galactic and extragalactic foregrounds and the CMB. We find that group-sized halos with virial masses below 1e14 M_solar can be detected at z < 0.05 with the threshold mass dropping to 3-4e13 M_solar at z < 0.01. The SZ distortion of nearby group-sized halos can thus be mapped out to the virial radius by these CMB experiments, beyond the sensitivity limits of X-ray observations. These measurements will provide a unique probe of hot gas in the outer regions of group halos, shedding insight into the local census of baryons and the injection of entropy into the intragroup medium from non-gravitational feedback.



rate research

Read More

We present the detection of the kinetic Sunyaev-Zeldovich effect (kSZE) signals from groups of galaxies as a function of halo mass down to $log (M_{500}/{rm M_odot}) sim 12.3$, using the {it Planck} CMB maps and stacking about $40,000$ galaxy systems with known positions, halo masses, and peculiar velocities. The signals from groups of different mass are constrained simultaneously to take care of projection effects of nearby halos. The total kSZE flux within halos estimated implies that the gas fraction in halos is about the universal baryon fraction, even in low-mass halos, indicating that the `missing baryons are found. Various tests performed show that our results are robust against systematic effects, such as contamination by infrared/radio sources and background variations, beam-size effects and contributions from halo exteriors. Combined with the thermal Sunyaev-Zeldovich effect, our results indicate that the `missing baryons associated with galaxy groups are contained in warm-hot media with temperatures between $10^5$ and $10^6,{rm K}$.
We present the detection of the kinetic Sunyaev-Zeldovich effect (kSZE) signals from groups of galaxies as a function of halo mass down to $log (M_{500}/{rm M_odot}) sim 12.3$, using the {it Planck} CMB maps and stacking about $40,000$ galaxy systems with known positions, halo masses, and peculiar velocities. The signals from groups of different mass are constrained simultaneously to take care of projection effects of nearby halos. The total kSZE flux within halos estimated implies that the gas fraction in halos is about the universal baryon fraction, even in low-mass halos, indicating that the `missing baryons are found. Various tests performed show that our results are robust against systematic effects, such as contamination by infrared/radio sources and background variations, beam-size effects and contributions from halo exteriors. Combined with the thermal Sunyaev-Zeldovich effect, our results indicate that the `missing baryons associated with galaxy groups are contained in warm-hot media with temperatures between $10^5$ and $10^6,{rm K}$.
104 - Seunghwan Lim , Houjun Mo , Ran Li 2017
A matched filter technique is applied to the Planck all-sky Compton y-parameter map to measure the thermal Sunyaev-Zeldovich (tSZ) effect produced by galaxy groups of different halo masses selected from large redshift surveys in the low-z Universe. Reliable halo mass estimates are available for all the groups, which allows us to bin groups of similar halo masses to investigate how the tSZ effect depends on halo mass over a large mass range. Filters are simultaneously matched for all groups to minimize projection effects. We find that the integrated y-parameter and the hot gas content it implies are consistent with the predictions of the universal pressure profile model only for massive groups above $10^{14},{rm M}_odot$, but much lower than the model prediction for low-mass groups. The halo mass dependence found is in good agreement with the predictions of a set of simulations that include strong AGN feedback, but simulations including only supernova feedback significantly over predict the hot gas contents in galaxy groups. Our results suggest that hot gas in galaxy groups is either effectively ejected or in phases much below the virial temperatures of the host halos.
87 - Mark Lacy 2018
The nature and energetics of feedback from thermal winds in quasars can be constrained via observations of the Sunyaev-Zeldovich Effect (SZE) induced by the bubble of thermal plasma blown into the intergalactic medium by the quasar wind. In this letter, we present evidence that we have made the first detection of such a bubble, associated with the hyperluminous quasar HE0515-4414. The SZE detection is corroborated by the presence of extended emission line gas at the same position angle as the wind. Our detection appears on only one side of the quasar, consistent with the SZE signal arising from a combination of thermal and kinetic contributions. Estimates of the energy in the wind allow us to constrain the wind luminosity to the lower end of theoretical predictions, ~0.01% of the bolometric luminosity of the quasar. However, the age we estimate for the bubble, ~0.1 Gyr, and the long cooling time, ~0.6 Gyr, means that such bubbles may be effective at providing feedback between bursts of quasar activity.
We report the direct detection of the kinetic Sunyaev-Zeldovich (kSZ) effect in galaxy clusters with a 3.5 sigma significance level. The measurement was performed by stacking the Planck map at 217 GHz at the positions of galaxy clusters from the Wen-Han-Liu (WHL) catalog. To avoid the cancelation of positive and negative kSZ signals, we used the large-scale distribution of the Sloan Digital Sky Survey (SDSS) galaxies to estimate the peculiar velocities of the galaxy clusters along the line of sight and incorporated the sign in the velocity-weighted stacking of the kSZ signals. Using this technique, we were able to measure the kSZ signal around galaxy clusters beyond 3R500. Assuming a standard beta-model, we also found that the gas fraction within R500 is fgas,500 = 0.12 +- 0.04 for the clusters with the mass of M500 ~ 1e14 Msun/h. We compared this result to predictions from the Magneticum cosmological hydrodynamic simulations as well as other kSZ and X-ray measurements, most of which show a lower gas fraction than the universal baryon fraction for the same mass of clusters. Our value is statistically consistent with results from the measurements and simulations and also with the universal value within our measurement uncertainty.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا