No Arabic abstract
We present results of optical spectroscopic and photometric observation of the pre-main sequence stars associated with the cometary shaped dark cloud Lynds 1622, and 12CO and 13CO observations of the cloud. We determined the effective temperatures and luminosities of 14 pre-main sequence stars associated with the cloud from their positions in the Hertzsprung--Russell diagram, as well as constructed their spectral energy distributions using optical, 2MASS and Spitzer IRAC and MIPS data. We derived physical parameters of L1622 from the molecular observations. Our results are not compatible with the assumption that L1622 lies on the near side of the Orion-Eridanus loop, but suggest that L1622 is as distant as Orion B. At a distance of 400 pc the mass of the cloud, derived from our CO data, is 1100 solar masses, its star formation efficiency is 1.8%, and the average age of its low-mass pre-main sequence star population is about 1 million years.
The Orion cloud complex presents a variety of star formation mechanisms and properties and it is still one of the most intriguing targets for star formation studies. We present VISTA/VIRCAM near-infrared observations of the L1630N star forming region, including the stellar clusters NGC 2068 and NGC 2071, in the Orion molecular cloud B and discuss them in combination with Spitzer data. We select 186 young stellar object (YSO) candidates in the region on the basis of multi-colour criteria, confirm the YSO nature of the majority of them using published spectroscopy from the literature, and use this sample to investigate the overall star formation properties in L1630N. The K-band luminosity function of L1630N is remarkably similar to that of the Trapezium cluster, i.e., it presents a broad peak in the range 0.3-0.7 M$_odot$ and a fraction of sub-stellar objects of $sim$20%. The fraction of YSOs still surrounded by disk/envelopes is very high ($sim$85%) compared to other star forming regions of similar age (1-2 Myr), but includes some uncertain corrections for diskless YSOs. Yet, a possibly high disk fraction together with the fact that 1/3 of the cloud mass has a gas surface density above the threshold for star formation ($sim$129 M$_odot$ pc$^{-2}$), points towards a still on-going star formation activity in L1630N. The star formation efficiency (SFE), star formation rate (SFR) and density of star formation of L1630N are within the ranges estimated for galactic star forming regions by the Spitzer core to disk and Goulds Belt surveys. However, the SFE and SFR are lower than the average value measured in the Orion A cloud and, in particular, lower than that in the southern regions of L1630. This might suggest different star formation mechanisms within the L1630 cloud complex.
We present submillimeter polarimetry at 850 micron toward the filamentary star-forming region associated with the reflection nebulosity NGC 2068 in Orion B. These data were obtained using the James Clerk Maxwell Telescopes SCUBA polarimeter. The polarization pattern observed is not consistent with that expected for a field geometry defined by a single mean field direction. There are three distinct distributions of polarization angle, which could represent regions of differing inclination and/or field geometry within the filamentary gas. In general, the polarization pattern does not correlate with the underlying total dust emission. The presence of varying inclinations against the plane of the sky is consistent with the comparison of the 850 micron continuum emission to the optical emission from the Palomar Optical Sky Survey, which shows that the western dust emission lies in the foreground of the optical nebula while the eastern dust emission originates in the background. Percentage polarizations are high, particularly toward the north-east region of the cloud. The mean polarization percentage in the region is 5.0% with a standard deviation of 3.1%. Depolarization toward high intensities is identified in all parts of the filament.
We conducted a long-term optical photometric and spectroscopic monitoring of the strongly variable, accreting young sun-like star [KOS94] HA11, associated with the dark cloud Lynds 1340, that exhibited large amplitude (5-6 magnitudes in the I_C band) brightness variations on 2-3 years timescales, flat spectral energy distribution (SED), and extremely strong (300 < EW/Angstrom < 900) H alpha emission. In this Letter we describe the basic properties of the star, derived from our observations between 1999 and 2011, and put into context the observed phenomena. The observed variations in the emission spectra, near-infrared colors, and SED suggest that [KOS94] HA11 (spectral type: K7--M0) is an eruptive young star, possibly similar in nature to V1647 Ori: its large-scale photometric variations are governed by variable accretion rate, associated with variations in the inner disk structure. The star recently has undergone strong and rapid brightness variations, thus its further observations may offer a rare opportunity for studying structural and chemical rearrangements of the inner disk, induced by variable central luminosity.
We have performed an optical spectroscopic and photometric search for young stellar objects associated with the molecular cloud Lynds 1340, and examined the structure of the cloud by constructing an extinction map, based on SDSS data. The new extinction map suggests a shallow, strongly fragmented cloud, having a mass of some 3700~Msun. Longslit spectroscopic observations of the brightest stars over the area of L1340 revealed that the most massive star associated with L1340 is a B4 type, about 5 solar mass star. The new spectroscopic and photometric data of the intermediate mass members led to a revised distance of 825 (+110 /-80) pc, and revealed seven members of the young stellar population with M > 2 solar masses. Our search for H alpha emission line stars, conducted with the Wide Field Grism Spectrograph 2 on the 2.2-meter telescope of the University of Hawaii and covering a 30 arcmin x 40 arcmin area, resulted in the detection of 75 candidate low-mass pre-main sequence stars, 58 of which are new. We constructed spectral energy distributions of our target stars, based on SDSS, 2MASS, Spitzer, and WISE photometric data, derived their spectral types, extinctions, and luminosities from BVRIJ fluxes, estimated masses by means of pre-main sequence evolutionary models, and examined the disk properties utilizing the 2-24 micron interval of the spectral energy distribution. We measured the equivalent width of the H alpha lines and derived accretion rates. The optically selected sample of pre-main sequence stars has a median effective temperature of 3970 K, stellar mass 0.7 Msun, and accretion rate of 7.6 10^{-9} Msun/yr.
The emission from young stellar objects (YSOs) in the mid-IR is dominated by the inner rim of their circumstellar disks. We present an IR-monitoring survey of about 800 objects in the direction of the Lynds 1688 (L1688) star forming region over four visibility windows spanning 1.6 years using the emph{Spitzer} space telescope in its warm mission phase. Among all lightcurves, 57 sources are cluster members identified based on their spectral-energy distribution and X-ray emission. Almost all cluster members show significant variability. The amplitude of the variability is larger in more embedded YSOs. Ten out of 57 cluster members have periodic variations in the lightcurves with periods typically between three and seven days, but even for those sources, significant variability in addition to the periodic signal can be seen. No period is stable over 1.6 years. Non-periodic lightcurves often still show a preferred timescale of variability which is longer for more embedded sources. About half of all sources exhibit redder colors in a fainter state. This is compatible with time-variable absorption towards the YSO. The other half becomes bluer when fainter. These colors can only be explained with significant changes in the structure of the inner disk. No relation between mid-IR variability and stellar effective temperature or X-ray spectrum is found.