Do you want to publish a course? Click here

The intermediate-mass star-forming region Lynds 1340. An optical view

211   0   0.0 ( 0 )
 Added by Maria Kun
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed an optical spectroscopic and photometric search for young stellar objects associated with the molecular cloud Lynds 1340, and examined the structure of the cloud by constructing an extinction map, based on SDSS data. The new extinction map suggests a shallow, strongly fragmented cloud, having a mass of some 3700~Msun. Longslit spectroscopic observations of the brightest stars over the area of L1340 revealed that the most massive star associated with L1340 is a B4 type, about 5 solar mass star. The new spectroscopic and photometric data of the intermediate mass members led to a revised distance of 825 (+110 /-80) pc, and revealed seven members of the young stellar population with M > 2 solar masses. Our search for H alpha emission line stars, conducted with the Wide Field Grism Spectrograph 2 on the 2.2-meter telescope of the University of Hawaii and covering a 30 arcmin x 40 arcmin area, resulted in the detection of 75 candidate low-mass pre-main sequence stars, 58 of which are new. We constructed spectral energy distributions of our target stars, based on SDSS, 2MASS, Spitzer, and WISE photometric data, derived their spectral types, extinctions, and luminosities from BVRIJ fluxes, estimated masses by means of pre-main sequence evolutionary models, and examined the disk properties utilizing the 2-24 micron interval of the spectral energy distribution. We measured the equivalent width of the H alpha lines and derived accretion rates. The optically selected sample of pre-main sequence stars has a median effective temperature of 3970 K, stellar mass 0.7 Msun, and accretion rate of 7.6 10^{-9} Msun/yr.



rate research

Read More

89 - M. Kun , G. Wolf-Chase , A. Moor 2016
We present results of an infrared study of the molecular cloud Lynds 1340, forming three groups of low and intermediate-mass stars. Our goals are to identify and characterise the young stellar population of the cloud, study the relationships between the properties of the cloud and the emergent stellar groups, and integrate L1340 into the picture of the star-forming activity of our Galactic environment. We selected candidate young stellar objects from the Spitzer and WISE data bases using various published color criteria, and classified them based on the slope of the spectral energy distribution. We identified 170 Class II, 27 Flat SED, and Class 0/I sources. High angular resolution near-infrared observations of the RNO 7 cluster, embedded in L1340, revealed eight new young stars of near-infrared excess. The surface density distribution of young stellar objects shows three groups, associated with the three major molecular clumps of L1340, each consisting of less than 100 members, including both pre-main sequence stars and embedded protostars. New Herbig--Haro objects were identified in the Spitzer images. Our results demonstrate that L1340 is a prolific star-forming region of our Galactic environment in which several specific properties of the intermediate-mass mode of star formation can be studied in detail.
235 - M. Kun , E. Szegedi-Elek , A. Moor 2011
We conducted a long-term optical photometric and spectroscopic monitoring of the strongly variable, accreting young sun-like star [KOS94] HA11, associated with the dark cloud Lynds 1340, that exhibited large amplitude (5-6 magnitudes in the I_C band) brightness variations on 2-3 years timescales, flat spectral energy distribution (SED), and extremely strong (300 < EW/Angstrom < 900) H alpha emission. In this Letter we describe the basic properties of the star, derived from our observations between 1999 and 2011, and put into context the observed phenomena. The observed variations in the emission spectra, near-infrared colors, and SED suggest that [KOS94] HA11 (spectral type: K7--M0) is an eruptive young star, possibly similar in nature to V1647 Ori: its large-scale photometric variations are governed by variable accretion rate, associated with variations in the inner disk structure. The star recently has undergone strong and rapid brightness variations, thus its further observations may offer a rare opportunity for studying structural and chemical rearrangements of the inner disk, induced by variable central luminosity.
The emission from young stellar objects (YSOs) in the mid-IR is dominated by the inner rim of their circumstellar disks. We present an IR-monitoring survey of about 800 objects in the direction of the Lynds 1688 (L1688) star forming region over four visibility windows spanning 1.6 years using the emph{Spitzer} space telescope in its warm mission phase. Among all lightcurves, 57 sources are cluster members identified based on their spectral-energy distribution and X-ray emission. Almost all cluster members show significant variability. The amplitude of the variability is larger in more embedded YSOs. Ten out of 57 cluster members have periodic variations in the lightcurves with periods typically between three and seven days, but even for those sources, significant variability in addition to the periodic signal can be seen. No period is stable over 1.6 years. Non-periodic lightcurves often still show a preferred timescale of variability which is longer for more embedded sources. About half of all sources exhibit redder colors in a fainter state. This is compatible with time-variable absorption towards the YSO. The other half becomes bluer when fainter. These colors can only be explained with significant changes in the structure of the inner disk. No relation between mid-IR variability and stellar effective temperature or X-ray spectrum is found.
We present Submillimeter Array (SMA) observations at 345 GHz towards the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern towards the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km/s, converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with MHD simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (~0.1 pc) of NGC 6334 V towards the higher-density hot core region (~0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.
We report multi-epoch VLBI H$_2$O maser observations towards the compact cluster of YSOs close to the Herbig Be star LkH$alpha$ 234. This cluster includes LkH$alpha$ 234 and at least nine more YSOs that are formed within projected distances of $sim$10 arcsec ($sim$9,000 au). We detect H$_2$O maser emission towards four of these YSOs. In particular, our VLBI observations (including proper motion measurements) reveal a remarkable very compact ($sim$0.2 arcsec = $sim$180 au), bipolar H$_2$O maser outflow emerging from the embedded YSO VLA 2. We estimate a kinematic age of $sim$40 yr for this bipolar outflow, with expanding velocities of $sim$20 km s$^{-1}$ and momentum rate $dot M_w V_w$ $simeq$ $10^{-4}-10^{-3}$ M$_{odot}$ yr$^{-1}$ km s$^{-1}$$times (Omega$/$4pi)$, powered by a YSO of a few solar masses. We propose that the outflow is produced by recurrent episodic jet ejections associated with the formation of this YSO. Short-lived episodic ejection events have previously been found towards high-mass YSOs. We show now that this behaviour is also present in intermediate-mass YSOs. These short-lived episodic ejections are probably related to episodic increases in the accretion rate, as observed in low-mass YSOs. We predict the presence of an accretion disk associated with VLA 2. If detected, this would represent one of the few known examples of intermediate-mass stars with a disk-YSO-jet system at scales of a few hundred au.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا