In this paper we present several algorithmic techniques for inferring the structure of a company when only a limited amount of information is available. We consider problems with two types of inputs: the number of pairs of employees with a given property and restricted information about the hierarchical structure of the company. We provide dynamic programming and greedy algorithms for these problems.
Quantifying coherence has received increasing attention, and considerable work has been directed towards finding coherence measures. While various coherence measures have been proposed in theory, an important issue following is how to estimate these coherence measures in experiments. This is a challenging task, since the state of a system is often unknown in practical applications and the accessible measurements in a real experiment are typically limited. In this Letter, we put forward an approach to estimate coherence measures of an unknown state from any limited experimental data available. Our approach is not only applicable to coherence measures but can be extended to other resource measures.
In social networks, information and influence diffuse among users as cascades. While the importance of studying cascades has been recognized in various applications, it is difficult to observe the complete structure of cascades in practice. Moreover, much less is known on how to infer cascades based on partial observations. In this paper we study the cascade inference problem following the independent cascade model, and provide a full treatment from complexity to algorithms: (a) We propose the idea of consistent trees as the inferred structures for cascades; these trees connect source nodes and observed nodes with paths satisfying the constraints from the observed temporal information. (b) We introduce metrics to measure the likelihood of consistent trees as inferred cascades, as well as several optimization problems for finding them. (c) We show that the decision problems for consistent trees are in general NP-complete, and that the optimization problems are hard to approximate. (d) We provide approximation algorithms with performance guarantees on the quality of the inferred cascades, as well as heuristics. We experimentally verify the efficiency and effectiveness of our inference algorithms, using real and synthetic data.
The thermodynamic definition of entropy can be extended to nonequilibrium systems based on its relation to information. To apply this definition in practice requires access to the physical systems microstates, which may be prohibitively inefficient to sample or difficult to obtain experimentally. It is beneficial, therefore, to relate the entropy to other integrated properties which are accessible out of equilibrium. We focus on the structure factor, which describes the spatial correlations of density fluctuations and can be directly measured by scattering. The information gained by a given structure factor regarding an otherwise unknown system provides an upper bound for the systems entropy. We find that the maximum-entropy model corresponds to an equilibrium system with an effective pair-interaction. Approximate closed-form relations for the effective pair-potential and the resulting entropy in terms of the structure factor are obtained. As examples, the relations are used to estimate the entropy of an exactly solvable model and two simulated systems out of equilibrium. The focus is on low-dimensional examples, where our method, as well as a recently proposed compression-based one, can be tested against a rigorous direct-sampling technique. The entropy inferred from the structure factor is found to be consistent with the other methods, superior for larger system sizes, and accurate in identifying global transitions. Our approach allows for extensions of the theory to more complex systems and to higher-order correlations.
The first part of this paper aims at illustrating the intense scientific activity in the field of stellar rotation although, for sake of shortness, we cannot be exhaustive nor give any details. The second part is devoted to the rotation as a pertubation effect upon oscillation frequencies. The discussion focuses on one specific example: the p-modes frequency small separation which provides information about properties of the stellar inner layers. It is shown that the small separation can be affected by rotation at the level of 0.1-0.2 microHz for a 1.4 Mo model rotating with an equatorial velocity of 20 km/s at the surface. This is of the same order of magnitude as the expected precision on frequencies with a 3 months observation and must therefore be taken into account. We show however that it is possible to recover the small separation free of these contaminating effects of rotation, provided enough high quality data are available as will be with space seismic missions such as Eddington.
Functional protein-protein interactions are crucial in most cellular processes. They enable multi-protein complexes to assemble and to remain stable, and they allow signal transduction in various pathways. Functional interactions between proteins result in coevolution between the interacting partners, and thus in correlations between their sequences. Pairwise maximum-entropy based models have enabled successful inference of pairs of amino-acid residues that are in contact in the three-dimensional structure of multi-protein complexes, starting from the correlations in the sequence data of known interaction partners. Recently, algorithms inspired by these methods have been developed to identify which proteins are functional interaction partners among the paralogous proteins of two families, starting from sequence data alone. Here, we demonstrate that a slightly higher performance for partner identification can be reached by an approximate maximization of the mutual information between the sequence alignments of the two protein families. Our mutual information-based method also provides signatures of the existence of interactions between protein families. These results stand in contrast with structure prediction of proteins and of multi-protein complexes from sequence data, where pairwise maximum-entropy based global statistical models substantially improve performance compared to mutual information. Our findings entail that the statistical dependences allowing interaction partner prediction from sequence data are not restricted to the residue pairs that are in direct contact at the interface between the partner proteins.