No Arabic abstract
The thermodynamic definition of entropy can be extended to nonequilibrium systems based on its relation to information. To apply this definition in practice requires access to the physical systems microstates, which may be prohibitively inefficient to sample or difficult to obtain experimentally. It is beneficial, therefore, to relate the entropy to other integrated properties which are accessible out of equilibrium. We focus on the structure factor, which describes the spatial correlations of density fluctuations and can be directly measured by scattering. The information gained by a given structure factor regarding an otherwise unknown system provides an upper bound for the systems entropy. We find that the maximum-entropy model corresponds to an equilibrium system with an effective pair-interaction. Approximate closed-form relations for the effective pair-potential and the resulting entropy in terms of the structure factor are obtained. As examples, the relations are used to estimate the entropy of an exactly solvable model and two simulated systems out of equilibrium. The focus is on low-dimensional examples, where our method, as well as a recently proposed compression-based one, can be tested against a rigorous direct-sampling technique. The entropy inferred from the structure factor is found to be consistent with the other methods, superior for larger system sizes, and accurate in identifying global transitions. Our approach allows for extensions of the theory to more complex systems and to higher-order correlations.
We present a formalism for the scattering of an arbitrary linear or acyclic branched structure build by joining mutually non-interacting arbitrary functional sub-units. The formalism consists of three equations expressing the structural scattering in terms of three equations expressing the sub-unit scattering. The structural scattering expressions allows a composite structures to be used as sub-units within the formalism itself. This allows the scattering expressions for complex hierarchical structures to be derived with great ease. The formalism is furthermore generic in the sense that the scattering due to structural connectivity is completely decoupled from internal structure of the sub-units. This allows sub-units to be replaced by more complex structures. We illustrate the physical interpretation of the formalism diagrammatically. By applying a self-consistency requirement we derive the pair distributions of an ideal flexible polymer sub-unit. We illustrate the formalism by deriving generic scattering expressions for branched structures such as stars, pom-poms, bottle-brushes, and dendrimers build out of asymmetric two-functional sub-units.
Recently we developed a formalism for the scattering from linear and acyclic branched structures build of mutually non-interacting sub-units.{[}C. Svaneborg and J. S. Pedersen, J. Chem. Phys. 136, 104105 (2012){]} We assumed each sub-unit has reference points associated with it. These are well defined positions where sub-units can be linked together. In the present paper, we generalize the formalism to the case where each reference point can represent a distribution of potential link positions. We also present a generalized diagrammatic representation of the formalism. Scattering expressions required to model rods, polymers, loops, flat circular disks, rigid spheres and cylinders are derived. and we use them to illustrate the formalism by deriving the generic scattering expression for micelles and bottle brush structures and show how the scattering is affected by different choices of potential link positions.
We introduce a scheme for deriving an optimally-parametrised Langevin dynamics of few collective variables from data generated in molecular dynamics simulations. The drift and the position-dependent diffusion profiles governing the Langevin dynamics are expressed as explicit averages over the input trajectories. The proposed strategy is applicable to cases when the input trajectories are generated by subjecting the system to a external time-dependent force (as opposed to canonically-equilibrated trajectories). Secondly, it provides an explicit control on the statistical uncertainty of the drift and diffusion profiles. These features lend to the possibility of designing the external force driving the system so to maximize the accuracy of the drift and diffusions profile throughout the phase space of interest. Quantitative criteria are also provided to assess a posteriori the satisfiability of the requisites for applying the method, namely the Markovian character of the stochastic dynamics of the collective variables.
The Jarzynski identity can be applied to instances when a microscopic system is pulled repeatedly but quickly along some coordinate, allowing the calculation of an equilibrium free energy profile along the pulling coordinate from a set of independent non-equilibrium trajectories. Using the formalism of Wiener stochastic path integrals in which we assign temperature-dependent weights to Langevin trajectories, we derive exact formulae for the temperature derivatives of the free energy profile. This leads naturally to analytical expressions for decomposing a free energy profile into equilibrium entropy and internal energy profiles from non-equilibrium pulling. This decomposition can be done from trajectories evolved at a unique temperature without repeating the measurement as done in finite-difference decompositions. Three distinct analytical expressions for the entropy-energy decomposition are derived: using a time-dependent generalization of the weighted histogram analysis method, a quasi harmonic spring limit, and a Feynman-Kac formula. The three novel formulae of reconstructing the pair of entropy-energy profiles are exemplified by Langevin simulations of a two-dimensional model system prototypical for force-induced biomolecular conformational changes. Connections to single-molecule experimental means to probe the functionals needed in the decomposition are suggested.
Bipartite networks are currently regarded as providing a major insight into the organization of many real-world systems, unveiling the mechanisms driving the interactions occurring between distinct groups of nodes. One of the most important issues encountered when modeling bipartite networks is devising a way to obtain a (monopartite) projection on the layer of interest, which preserves as much as possible the information encoded into the original bipartite structure. In the present paper we propose an algorithm to obtain statistically-validated projections of bipartite networks, according to which any two nodes sharing a statistically-significant number of neighbors are linked. Since assessing the statistical significance of nodes similarity requires a proper statistical benchmark, here we consider a set of four null models, defined within the exponential random graph framework. Our algorithm outputs a matrix of link-specific p-values, from which a validated projection is straightforwardly obtainable, upon running a multiple hypothesis testing procedure. Finally, we test our method on an economic network (i.e. the countries-products World Trade Web representation) and a social network (i.e. MovieLens, collecting the users ratings of a list of movies). In both cases non-trivial communities are detected: while projecting the World Trade Web on the countries layer reveals modules of similarly-industrialized nations, projecting it on the products layer allows communities characterized by an increasing level of complexity to be detected; in the second case, projecting MovieLens on the films layer allows clusters of movies whose affinity cannot be fully accounted for by genre similarity to be individuated.